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Scope of the Memorr.

1. My object in this memoir is to separate the necessary matter of exact or
mathematical thought from the accidental clothing—geometrical, algebraical, logical,
&c.—in which it is usually presented for consideration; and to indicate wherein
consists the infinite variety which that necessary matter exhibits.

2. The memoir is confined to the exposition of fundamental principles, to their
elementary developments, to their application to such a variety of cases as will
vindicate their value, and to a description of some simple and uniform modes of
putting the necessary matter in evidence. I have been unable to ascertain that the
principles here set; forth have been previously formulated.

Fundamental Principles.

3. Whatever may be the true nature of things and of the conceptions which we
have of them (into which points we are not here concerned to inquire), in the
operations of reasoning they are dealt with as a number of separate entities or units.

4. These units come under consideration in a variety of garbs—as material objects,
intervals or periods of time, processes of thought, poiuts, lines, statements, relation-
ships, arrangements, algebraical expressions, operators, operations, &e., &c., occupy
various positions, and are otherwise variously circumstanced. Thus, while some units
are incapable of being distinguished from each other, others are by these peculiarities
rendered distinguishable. For example, the angular points of a square are distin-
guishable from the sides, but are not distinguishable from each other. In some
instances where distinctions exist they are ignored as not material. Both cases are
included in the general statement that some units are distinguished from each other
and some are not.

5. In like manner some pairs of units are distinguished from each other, while
others are not. Pairs may in some cases be distinguished even though the units
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composing them are not. Thus the angular points of a square are undistinguishable
from each other, and a pair of such points lying at the extremities of a side are undis-
tinguishable from the three other like pairs, but are distinguished from the two pairs
formed by taking the angular points at the extremities of the diagonals, which pairs
again are undistinguishable from each other. Further, a pair ab may sometimes be dis-
tinguished from the pair ba though the units a and b are undistinguished. Thus, in
fig. 1 the three black spots a, b, ¢, are all undistinguished from each other, each has an

[24

Fig. 1.
arrow proceeding to it and an arrow proceeding from it, but the pair ab is distinguished
from the pair ba, for an arrow proceeds from « to b, but none from b to a.

6. It will be convenient to speak of ab and ba as different aspects of the collection
of two units a, b. Here the terms “aspect” and “ collection” are each to be
understood as referring to two separate units, and not to those units regarded in the
aggregate as a single unit.

7. Again, there are also distinguished and undistinguished triads, tetrads, . . .
m-ads, . .. n-ads . . .; every m-ad being, of course, distinguished from every n-ad.
Just as we may have ab distinguished from ba, though « is undistinguished from b,
so we may have an n-ad pgrst ... ww distinguished from qusvt ... rp, though the
units p, q, r, s, &c., are all undistinguished from each other, and further, though their
pairs are also undistinguished, as likewise their triads, &c. Here pgrst. .. wv and
qusvt . . . rp will be termed, as in the case of pairs, different aspects of the collection
Py q 1,8, t, ... u,v; the term * collection ” being understood to refer to a number of
separate units without reference to the various “aspects” of the collection. Different
aspects of the same collection of 7 units will be regarded as different, n-ads.

8. The terms “pair,” “triad” ... “n-ad,” “collection,” “aspect” will always be
understood to refer to two, three, n, &c., units, and never to aggregations of units
considered as a single unit. Pairs, triads, n-ads, collections, aspects may, of course,
be regarded as units, but when they are so regarded the fact will be distinctly
pointed out.

9. Every collection of units has a definite form due (1) to the number of its

a b a 7

Fig. 2.
component units, and (2) to the way in which the distinguished and undistinguished

units, pairs, triads, &c., are distributed through the collection. Two collections of
B 2
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the same number of units but having different distributions will be of different
forms. Thus the two tetrads @, b, ¢, d, and p, ¢, 7, s, of fig. 2, contain the same
number (four) of unit spots, but they are of different forms; for @, b, ¢, d are all
undistinguished from each other; while ¢, », s, though undistinguished from each
other, are all distinguished from p. The distribution of the distinguished and
undistinguished pairs and triads is also obviously different in the two cases. The
word “form” will in this memoir be always employed in the sense here indicated.

10. Two collections of units which are undistinguished are of the same form, but
two collections which are of the same form are not necessarily undistinguished ; there
may be the same distribution of distinguished and undistinguished units, pairs, &e.,
in each, while the units, pairs, &c, of one are all distinguished from the units, pairs, &e.,
of the other.

11. Each of the forms which a system of any number n of units can assume, owing
to varieties of distribution, is one of a definite number of possible forms, and the
peculiarities and properties of the collection depend, as far as the processes of reasoning
are concerned, upon the particular form it assumes, and are independent of the dress,
geometrical. algebraical, logical, &c., in which it is presented; so that two systems
which are of the same form have precisely the same properties, although the garbs
in which they are severally clothed may, by their dissimilarity, lead us to place the
systems under very different categories, and even to regard them as belonging to
“different branches of science.”

12. It may seem in some cases that other considerations are involved besides
“form,” but it will be found on investigation that the introduction of such con-
siderations involves also the introduction of fresh units, and then we have merely
to consider the form of the enlarged collection.

18. In order to put form in evidence some ‘“accidental” clothing is of course
necessary ; if, however, we employ more than one species of clothing, each species
being uniform and suited to forms of every kind, the likelihood of its accidental
nature being overlooked will be reduced to a minimum.

Units.

14. The units which we have to consider exhibit endless variety; thus we may
have a material object dealt with as one unit, a quality it possesses as another, a
statement about it as a third, and a position it occupies in space as a fourth. The
task of specifying the units which are considered in an investigation may in some
cases be one of considerable difficulty, and mistakes are likely to occur unless the
operation is conducted with great care.

15.. We have frequently to deal with things =, v, #, &ec., pairs, &ec., of those things,
the differences between which depend on the existence or non-existence of certain
circumstances, or upon taking into account or ignoring certain circumstances. Thus
we may apparently have collections of units @, v, 2, &c., which are at one time ¢, when
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one state of things exists, of one form, and al another time ¢" of another form. This
is, however, not so; the form of a collection is absolutely invariable. The apparent
alteration of form arises from overlooking the fact that the units dealt with are not
z, ¥, z, &c., but (x at time ¢), (y at time ¢), &ec., (x at time ¢), (v at time ¢'), &c. The
unit, (2 at time ¢) may be quite different from (x at time ¢'). Where there is only one
alternative ¢, the collection (x at time t), (y at time ¢), (z at time t), &c., is of the same
form as the collection z, v, 2, &c., and it matters not which is the collection dealt with.

16. Aggregations of those things which, in a symbolical representation of the units
considered in any case, are already represented as units, must not be supposed to be
sufficiently represented without additional symbols, but must each be represented by
a distinct symbolical unit. An aggregation of things is, as far as the processes of
reasoning are concerned, a mere unit, and must be so dealt with.

17.. While it is important that a unit should be represented and dealt with as a
unit, it is equally important that we should not be misled by our modes of thought
and consequent use of language into regarding a number of distinct units as one only.
A collection of units must in a symbolical representation be represented as a single
unit where it is so regarded ; but where the word “collection ” is used, as it is here
(sec. 8), merely to “denote” or mark off a number of things each of which is
considered as a distinct unit, we must be careful to represent each of those things by
a distinct symbol.

Some Definitions.

18. Any collection of units which consists entirely of units selected from another
collection will be termed a component of the latter. Any aspect of a component of a
collection may also be spoken of as a component of the collection.

19. Two collections of units will be said to be detached it they have no component
in common.

20. An n-ad which has one or more units in common with each of a number of
collections will be said to be an n-ad connecting those collections; e.g., the pairs which
a single unit makes with the various units of a collection will be termed the pairs
connecting the unit and the collection. An n-ad connecting 7 detached collections has
one unit and one only in common with each. If A, B, C, D, .... be collections
of which a, b, ¢, d, ... are component units respectively ; when an n-ad connecting
ABCD...isspoken of, it must be understood that an n-ad suchasabecd...is
meant, and not one such asbdca ..., which will be spoken of as connecting
BDCA ...

21. If the component units of a collection are all undistinguished from each other
the collection will be said to be single.

22. Units which are undistinguished from the same unit are undistinguished from
each other; thus if a collection of units is not single it consists of two or more
detached single collections, and will be termed a double, treble, dc., collection, accord-
ing to the number of component single collections which it contains.
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23. Just as collections of units break up into single collections of undistinguished
units, so collections of pairs break up into single collections of undistinguished pairs,
and, generally, collections of n-ads into single collections of undistinguished n-ads.

24. Differences between the various units, pairs, &c., of a collection may be termed
the enternal differences of that collection. Differences between the various units,
pairs, &c., of a collection A and the units, pairs, &ec., of a detached collection may be

sald to be external to A.

Systems.

25. If every component unit of a collection is distinguished from every urit which is
detached from the collection, the collection will be termed a system.

26. Every collection of units is a component of some system.

- 27. The whole collection of units which come under consideration in any inquiry
is a system ; for the units are distinguished from all others by being the only ones
considered. :

28. The n-ads of one single system of units are distinguished from all those of any
other single system of units, and from all the n-ads connecting any two systems of
units. The connecting n-ads of any 7 systems of units are distinguished from those of
any other n systems of units, and themselves break up into single systems of n-ads.

29. The units of a single system of units must be dealt with as a whole ; for, as they
are undistinguished from each other, no definition can be given of, or remark made
about, one which is not equally applicable to each of the others. Each can only be
spoken of as “one of” the units of the system. A similar observation applies in the
case of single systems of pairs, triads, &ec.

30. Many systems of units are defined by stating that certain of their components
constitute a system. It must be borne in mind that such a statement does not mean
that the components are undistinguished from each other, but merely that they are
distinguished from all others; the system of components may be a multiple one. It
is by no means unnecessary to emphasize this, as we are prone to assume that the
mode of classifying things is that of putting like things into the same class, rather than
that of putting unlike things into different classes.

31. The distribution of the various distinguished and undistinguished components
of a system is regulated by definite laws; so that a knowledge of the mode of
distribution of some only of the distinguished and undistinguished components may
determine the form of the system. There are in general several ways in which the
form of a given systera may be thus determined, and accordingly various different
definitions of the same system may be adopted.

32. For the statement of some of the properties of a system S it may be necessary
to have the form fully defined ; in the case of others this may not be necessary, it being
sufficient to state that certain components are distinguished, without asserting
anything as to others, z.e., to state that certain components constitute a system,
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without asserting whether the system be single or multiple. The result of this may
of course be that we deal with different units at different stages of the investigation of
S (secs. 126 f).

83. Systems are frequently more readily dealt with when regarded as components
of more extensive systems. Much ingenuity has been expended on the discovery of
systems, the addition of which to the particular system under consideration may assist
in its investigation. It is to this that the existence of such units as substitutions,
quarternions, quadrates, &c. (as to some of which I shall have to speak presently), is
due. We shall see that we can always, by the addition of a proper system to any
given system, completely define the latter by merely indicating the mode of distri-
bution of certain pairs (secs. 81, 82).

34. Notwithstanding the great assistance derived from the use of added systems,
much reluctance is exhibited in employing them unless they can be shown to have
their representatives in nature, ¢.e., unless “accidental” clothing can be found to fit
them. The objections raised to symbolical methods which cannot be “interpreted”
are strong evidence of the fact that the accidental nature of much that comes under
our consideration is not really appreciated.

85. It is by no means unnecessary to state that the form of a system is independent
of the particular method of defining it which we adopt ; and that because it is easier to
define a system by adding fresh units, it does not owe its form to the existence of
those units,

86. The system which is the actual subject of investigation in an inquiry may be
termed the base system ; those systems which are added for the purpose of assisting
in the investigation being termed auwiliary systems.

Heaps.—Graphical Representation of Unats.

87. There are two forms of systems of n units the consideration of which properly
precedes that of all others. The one is that of a system which consists of n units,
each of which is distinguished from each of the others, so that every component s-ad
is distinguished from every other component s-ad for all values of s from 1 ton. A
system of this form I shall term a discrete heap.

38. The other is that of a system of n units which is such that every component
s-ad is undistinguished from every other component s-ad for all values of s from
1 ton. A system of this form I shall term a single heap.

89. A discrete heap may be graphically represented by a number of small separated

@ ©® 60 @

Fig. 3.

circles each containing a different letter (fig. 3). The letters render the graphical
units distinguishable from each other. '
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40. A single heap may be graphically represented by a number of small separated
circles each containing the same letter. (Fig. 4.)

@@ OO

Fig. 4.

41. Differences arising from the positions of the graphical units on the paper on
which they are drawn are always to be disregarded. Where positions are considered,
they must be represented by separate graphical units.

42. Where there is occasion to employ letters outside and adjacent to the graphical
units for purposes of reference, differences arising from the use of such letters are also
to be ignored. (Sec. 173.)

43. In every system of # units other then a discrete or single heap, some s-ads are
distinguished from each other and some are not, for all or some values of s from 1 to .
Thus every form which a system of n units can assume may be regarded as either that
of a discrete or single heap or as intermediate between the two.

44. There are systems of n units of other forms than those of discrete and single
heaps which can be represented by means of graphical units alone. These consist of
one or more detached independent single heaps. The term “independent” will be
fully explained presently (secs. 117, 118) ; for the present it will be sufficient to state
that two independent systems are such as can be graphically represented on separate
sheets of paper, without the employment of symbols on either sheet relating to those
on the other.

45. A system of s independent detached heaps will be termed an s-tuple heap.
Fig. 5 represents a treble heap of seven units.

® © O
% 0 @

Fig. 5.

46. A discrete heap of n units is an n-tuple heap of n units.

47, The number of different forms which a heap of 7 units can assume is the
same as that of the partitions of n.

48. It will in some cases be convenient, instead of employing circular graphical
units distinguished by internal letters, to use coloured graphical units, or black spots
of different sizes, or graphical units of various shapes.
~ 49. Where graphical units are employed alone, like units will represent undis-
tinguished units, but in the case of forms other than heaps it will be necessary
to employ means to distinguish pairs, &c., and these may cause like graphical units
to be distinguished from each other. No general inference must therefore be drawn
from the use of like and unlike graphical units other than that unlike units represent

distinguished units.
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Pairs.—Graphical Representation.

50. There are three different forms of pairs; viz., if @, b be two units, we can
have :—

(1) o distinguished from b, and therefore also ab distinguished from ba ;
(2) @ undistinguished from b, but ab distinguished from ba ;
(8) @ undistinguished from b, and ab undistinguished from ba.

51. The two units in case (1) belong to different single systems, and thus the pair
is a pair connecting two single systems.

52. In cases (2) and (3) both units belong to the same single system, and the
pairs are components of that system. The units in case (2) may be said to form
an unsymmetrical pair, those in case (8) being said to form a symmetrical pair. It
will be convenient in speaking of undistinguished unsymmetrical pairs ab, cd, to
say that ab and cd are of the same polarity, and that ab and dc are of opposite
polarities.  Of course in this case ab and ba are of opposite polarities. In the
case of a symmetrical pair e, f; ¢f and fe will be of the same polarity.

53. The expression “unsymmetrical” may also be applied to pairs falling under
case (1). We may also in the case of such pairs say that ab and ¢d if undistinguished
are of the same polarity, ab and de of opposite polarities.

54. If in a diagram consisting of a number of graphical units, some pairs of those
units are joined by plain lines or links, as in fig. 6, while others are not so joined, the

O—=@
Fig. 6.

pairs will be divided into two systems. Pairs which are thus joined by links will not
be necessarily undistinguishable, nor will pairs which are not joined by links be
necessarily undistinguishable, but we merely have pairs which are joined by links
distinguished from pairs which are not so joined. Thus the two systems into which

the pairs are divided may each be either a single or multiple system.
55. A large number of systems may be completely defined by diagrams consisting
of graphical units and links only. We have already seen that an extensive class

Fig. 7.

of systems may be represented by diagrams consisting of different sorts of graphical

units only ; there are also systems which may be fully defined when we indicate

by links a dichotomy of their component pairs, without defining further what units

are distinguished and what are not. Thus the system of fig. 7 must be a discrete
MDCCCLXXXVL v
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heap, each graphical unit admitting of separate definition. By the use of links
in conjunction with graphical units of different sorts the number of representable
forms is greatly increased. I shall give in the following four sections some examples
of forms which may be represented by the use of graphical units and links.

56. Figs. 8 and 9 illustrate the fact that a system may be defined in various ways ;

7 (@7

Fig. 8. Fig. 9.

they represent systems of the same form. Pairs which are not joined by links in
tig. 8 are joined in fig. 9, and wvice versd.
57. 1 give the systems of figs. 10 and 11 as examples of two varieties of single

Fig. 11.

systems of the same number of units.- In fig. 10 there are four sorts of pairs of
which Im, In, lo, lp, are types. In fig. 11 there are only three sorts, of which wv,
uw, and uw, are types. It may be noticed that in each case the linked pairs compose
a single system ; while the unlinked pairs in the former case compose a treble system,
in the latter a double one. )

58. Fig. 12 is an exampleof a triple system containing unsymmetrical pairs of both

Fig. 12.

sorts.  We have p, ¢ an unsymmetrical pair composed of two undistinguished units,
and p, 7 an unsymmetrical pair composed of two distinguished units.

59. The single system shown in fig. 13 is one of considerable interest; it is that
dealt with in the case of the theorem that if two coplanar triangles are coaxial they
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are also copolar (Theorem (1), sec. 857). The graphical units may be taken to
represent, either the ten straight lines of the theorem, or the ten points of intersection ;

Fig. 13.

the form is the same in either case. Taking the former case, the pairs of graphical units
which are joined by links correspond to pairs of lines whose points of intersection are
points other than the ten considered in the theorem. It should be noticed that the
two systems into which the pairs are divided (linked and unlinked), are each single.

60. Weshall see (secs. 81, 82), that by the addition of units to any system S, .e., by
regarding S as a component of a more extensive system, we can represent, the form of
S by the use of graphical units and links only. It will, however, be convenient in
many cases to employ some further devices which will enable us, without employing
additional graphical units, to represent forms which could not be exhibited by the use
of plain links only. '

61. Thus we may have lines of various sorts joining two graphical units, viz.,

dotted, wavy (fig. 14), red, blue, &c., in addition to links, which will always be under-

Fig. 14.

stood to be plain lines. Pairs joined by unlike lines will be, as in the case of links,
distinguished from each other.

62. Where a pair is unsymmetrical an arrow-head or barb may be added to the link
or other line joining the two graphical units which represent the pair (fig. 15). The
arrow-head has the effect of making ab distinguished from ba. In the fig. the arrow-

Fig. 15.

heads make ab distinguished from fe, but not from ef. The relative directions of
the arrow-heads in the case of pairs joined by unlike lines are immaterial. It is
c 2
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unnecessary to add an arrow-head in the case of a pair of distinguished units; the
difference between the graphical units indicates the ahsence of symmetry.

63. We may in some cases of symmetrical pairs instead of employing a single line,
use two barbed lines of opposite polarities, as in fig. 16.

Fig. 16.

64. In place of using a number of different sorts of lines, we may use plain lines,
barbed or unbarbed according as the pairs are unsymmetrical or symmetrical, with
letters alongside of them ; like letters being used where otherwise like lines would be
used, and unlike where unlike lines would be used (fig. 17). Though this method is
not so good as the previous one as regards its power of enabling us to visualize the

Fig. 17.

systems represented, it has distinct advantages for purposes of description, as we can
denote pairs of different sorts by the annexed letters, the sorts (sec. 84) of which
denote the sorts of the pairs. 4

65. If o denotes an unsymmetrical pair ab, we may denote the pair ba by 0 ; or, as
this is in some instances awkward, by ¢’ where (o)’ =0

66. Although, as we have seen, it is in many cases unnecessary to draw lines
connecting all pairs of graphical units in order to completely define a system
(secs. 55-59), it may in some cases be desirable to do so, especially where we wish to
show how many different sorts of pairs there are under consideration. In such cases
we may connect like pairs by like lines and unlike by unlike lines. Thus the diagram
of fig. 18, which completely defines a system of six units, may be completed as in

Fig. 18. Fig. 19.

fig. 19 so as to show that there are two sorts of unsymmetrical pairs and one sort of

symmetrical pairs.
67. In general, in diagrams in which lines other than links are employed, either in
conjunction with links or not, like pairs of graphical units will be joined by like -

lines. :
68. Tt can readily be shown that every form which admits of representation by
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means of graphical units and lines of different sorts, can, by the introduction of
additional or auwiliary graphical units, be represented by means of graphical units
and links only. It will be convenient for the purpose of description to suppose
that the lines of different sorts are of different colours. In the place of any red
line substitute a red unit (i.e., one coloured red, instead of having a letter inside),
this unit being connected by two links to the two units which were joined by
the red line (fig. 20). Effect this change in the case of all the red lines; and

&
@ &
Fig. 20.

similarly in the place of blue, yellow, &c., lines, substitute blue, yellow, &c., units,
joined by links to the units which were connected by the several coloured lines. The
red units and links will have precisely the same effect in rendering pairs distinguishable
as the red lines had. 'We may, if we please, substitute letters for the various colours
in the added units, and so obtain a diagram consisting of graphical units and links,
representing a collection of which the original one is only a component. This
component is, however, of the same form as before.

69. In the case of an unsymmetrical pair, pg, of undistinguished graphical units
which would ordinarily be joined by a barbed line, we must have two additional
undistinguished graphical units in some cases, as in fig. 21, where u, v are the

auxiliary units.
O?—QV\)
ya 7

Fig. 21.

70. In the case of unsymmetrical pairs of distinguished units we have seen that
no barbs are necessary (sec. 62), and we need therefore only one additional graphical
unit, as in sec. 68.

71. All systems of which the forms are determined by the dlstmgmshableness and
undistinguishableness of units and pairs only, may be represented by the methods
we have been considering. But there are also systems, the forms of which are not
so determined, but depend upon the distinguishableness and undistinguishableness
of triads, tetrads, &c. Such systems may at first sight require other expedients for
their graphical representation, but we shall see, as already stated (secs. 33, 60), that
these are not necessary.

72. Diagrams such as those we have been discussing may come under our
consideration in other ways than as representing graphically systems of different
forms. In such cases it must not be assumed that the units under consideration
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are the small circles, or only those; in general this will not be so; the units may
be the links, or the ways in which a number of small circles or spots can be connected
by links, &c. If we ascertain exactly what the units really dealt with are, we may
construct a graphical representation of the system they constitute, and this may
be of a very different character from that of the diagram from which it is derived.

Aspects.

78. If two collections of units are undistinguished, they may be regarded as
corresponding to each other in one or more ways, in each of which correspondences to
each unit, and therefore to each pair, triad, &c., of one collection there corresponds in
the other a counterpart unit, pair, triad, &c., undistinguished from the former in dress
or other circumstance. In any one of these correspondences, two corresponding units
are regarded as occupying corresponding places, or, as we may express it, places of the
same sort. Furthermore, each of the corresponding units is regarded as belonging to
one or the other of the two collections, each of which is regarded also in the aggregate
as a single unit.

74. Now the unit A which is dealt with when we thus regard a unit ¢ as occupying -
a place of a particular sort ¢ in a particular collection, is a different unit from « ; it may
be called an aspect of a.

75. Thus when we consider a correspondence of two undistingnished collections

a, b, e, d, ...and p,q 7 s, ... where

a corresponds with p

b 2 2 q
c l7’ » r
and so on, we deal with a collection of units A, B, C, D, .. ... .PLQ RS, ..... .

where any unit R is the unit arrived at by considering the unit 7 as occupying a place
of a particular sort, the unit C being that arrived at by considering the unit ¢ as
occupying a place of the same sort ; and similarly in the case of the other corresponding
units. FEach of the collections A, B,C,D,... and P, Q, R, S,....is an aspect,
the former of the collection a, b, ¢, d, . . . and the latter of the collection p, g, 7, s, . ..
We also regard A, B, C, D, . . . in the aggregate as a single unit V, which may be
termed a unified aspect of @, b, ¢, d, . . . and so also in the case of P, Q, R, S, . . .

76. The collections A, B, C, D, . .. and P, Q, R, S, . . . may be different aspects of
the same collection 7, m, n, o, . . . ., as a collection may be self-correspondent, and the
number of units @, b, ¢, d, . . . be accordingly the same as that of the number of sorts
of places considered.

77. We may have a number of undistinguished collections, each of » units, all
corresponding to each other. If there be m such collections, in any correspondence in
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which they all correspond we have mn unit aspects such as A, n sorts of places, and
each sort of place occupied by m units.

78. A, the aspect of @ in a correspondence, bears definite relations (sec. 79) to three
other units, viz. :— :

(1) @ of which it is an aspect.

(2.) The unified aspect V arrived at by regarding as a unit the aspect of which
it is a component.

(8.) The sort ¢ of the place a occupies in the correspondence.

79. The “ definite relations” of the preceding section consist merely in this, viz,
that the pairs which A makes with a, V, and g, are all distinguished from all the other
pairs which A makes with other units. (See secs. 143 ff, on Associates.)

80. The tetrad A, @, V, ¢, may be graphically represented as in fig. 22; the
graphical unit A being joined to no other graphical units besides a, V, and ¢. Since

Fig. 22.

the units A, o, V, and g, are obviously distinguished from each other, the graphical
units are made so also.

81. It appears, then, that in studying the form of a system S by means of
correspondences of undistinguished components, we really regard S as a component of
a more extensive system, containing

(1.) the system S ;

(2.) the system X composed of units which are conceived of as sorts of places ;

(3.) the system Y composed of units which are conceived of as unified aspects of
all the various component collections of S ;’

(4.) the system Z composed of units which are conceived of as aspects of single
units of S.

The pairs connecting Z and the joint system S, X, Y, break up into two systems,
graphically represented by linked and unlinked pairs of graphical units respectively.

82. A graphical representation in which the units of 8, X, Y, Z, are all represented
by graphical units, and links connecting the graphical units are drawn in the manner
indicated in the last two sections, fully defines the form of S, as it completely
indicates what components are undistinguished and what are not. Such a graphical
representation is sometimes termed a “linkage,” so that we may say that every
system may be graphically represented by a linkage (secs. 194, 195).
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83. The system Y was described in sec. 81 as consisting of unified aspects of all the
component collections of S, i.e., the component pairs, triads, &e. It is, however,
unnecessary so far as defining the form of S is concerned that this should be so. We
shall see that it is sufficient that Y should include a unified aspect V of the whole
system S, and all other unified aspects of S which are undistinguished from V
(secs. 194, 195).

Letters, their Sorts and Positions.

84. Let us now turn aside to consider certain points with regard to the representa-
tion of units by letters. Any letter admits of being repeated as often as we please ;
each repetition being one of a number of letters of the same sort. When in common
parlance we speak of letters a, b, ¢, d, &c., we are really referring, not to the letters
themselves, but to their sorts. Each letter (not sort of letter) occupies a different
- position on the paper on which it is written or printed; as in the case of the
letters, we have a number of positions of the same sort, each called “the same
position ” with reference to another of the number. For example, if we have two
arrays of the same number of letters, e.g., abede and pqrst, we say that ““b occupies
the same position in the first array that ¢ does in the second,” meaning that the sort
of the position b occupies is the sort of that which ¢ occupies.

85. The sorts of the letters and the sorts of the positions are both dealt with as
units. Further, we regard each letter as belonging to a particular collection regarded
in the aggregate as a single unit, say a unified collection.

86. Thus a letter bears definite relations to

(1.) its sort;
(2.) the unified collection to which it belongs ;
(8.) the sort of its position.

Representation of Aspects of Collections by Arrays of Letters.

87. Thus we have an exact copy in a different dress of the state of things considered
in secs. 73-83. If then we represent
(1.) the units of any collection by the sorts of letters; we may represent
(2.) the sorts of places occupied by those units in a correspondence with an
undistinguished collection by the sorts of the positions of the letters ;
(8.) an aspect of the collection by a collection of letters in sorts of positions ;
(4.) unified aspects by unified collections of letters ; -
(5.) aspects of single units by single letters.
88. Taking, then, arrays as our collections of letters, an aspect may be represented
thus abedef . . . . . (¢.e.,in the manner adopted in sec. 7), where the order of the letters
is to be regarded as material to this extent, viz., that though the aspect which is
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represented by abedef . . . . might equally well be represented by bdacfe . . . . , yet, if
this be done, the aspect originally represented by bdacfe . . . must be represented by
dcbaef . . . , and that originally represented by pgrstw . . . by gsprut . . . ., and similarly
in the case of other aspects and other transpositions of the sorts of the positions
occupied by the letters in the arrays. Whatever change be effected in the order of
the letters in one array, a precisely similar change must be made in the order of the
letters in each of the other arrays of the same number of letters. The relative order
in arrays of different numbers of letters is immaterial, as such arrays represent
collections of different numbers of units which are therefore distinguished, and are not
regarded as corresponding.

Elementary Properties of Aspects.

89. The symbols >—< and <—= will be used to represent “is undistinguished
from” and “is distinguished from ” respectively; and such expressions as “let o
>—<b” must be read, “let ¢ be undistinguished from b”; and similarly in other
cases.

90. Symbols, such as a, b, ¢, d, in which commas separate the letters, will always
be supposed, as heretofore, to represent a collection of units without reference to
particular aspects, the order of the letters being accordingly supposed to be im-
material. '

91. A statement such as abed . ... >—<pgrs. ... implies that the components
represented by taking corresponding letters on each side of the >—< are undis-
tinguished ; e.g., bc >—< qr. A statement such as abed . ... <—> pgrs....
does not imply that a, b, ¢, d,. ... <—> p,q, 7, s,....for it is consistent with
the statement that abed .. . >—<Csrgp . . . which implies that , b, ¢, d, . . . >—<
Py Qs Ty Sy

92. If abcd ... >—< pgrs. .., then bdca ... >—< gsrp . . .; and similarly
in the case of any other transposition of letters.

93. If pgrs . .. be merely abed . . . in a different order, so that we are considering
two aspects of the same collection, and if we repeat on pgrs . . . the transposition by
which it is derived from abed . .., we get another aspect which by the preceding
section is undistinguished from pgrs . . ., and therefore from abed . . .

94. If abed . . >—< pgrs. ., and if [, m, n, 0, . . . be units other than a, b, ¢, d, . . .,
there must be units w, x, 9, 2, . . other than p, ¢, 7, s, such that abed ... Imno. ..
> Pqrs . .. wryz . . .

95. If abed . .. <—= pqrs . . . each collection having the same number of units,
and if /, m, n, o, . . . be units other than a, b, ¢, d, . . . there cannot be any units
w, &, Y, %, . . . such that abed . . . Imno . . >—<pgrs...weyz . ...

96. Every collection of # units has |n aspects. If m aspects of the collection are
undistinguished from each other, but are distinguished from all other aspects of the

MDCCCLXXXVI, D
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collection, m must be a factor of [n, and the aspects break up into q’% systems, each

consisting of m aspects.

97. It follows immediately from sec. 92 that if we write down the symbols abed . . .,
&c., representing any aspect and all other aspects which are undistinguished from it,
and we transpose the letters of abed . .. and make precisely the same transpositions
in the case of the letters of the symbols representing the other undistinguished
aspects, we shall get a collection of symbols of undistinguished aspects which may or
may not be the same as the former.

98. If abed . . . be an aspect of a whole system S of n units, so that all the aspects
undistinguished from it are aspects of the whole system S, there being in all m un-
distinguished aspects, the different transpositions of sec. 97 will give us all the
different systems of aspects of S referred to in sec. 96.

99. If the array of letters abed . . . representing any aspect of a whole system S be
given, and also those arrays representing all the other aspects of S which are un-
distinguished from abed . .., then the form of S is given; d.e., if pgrs. .. be an
aspect of any component collection of S, we know what other aspects of component
collections of S are distinguished and what undistinguished from pgrs... For add
letters to pgrs . . . until we get an array pgrs...Imn ... representing an aspect of
the whole system S. If this is not the same as one of the given arrays, transpose the
letters of any one of the latter so that it becomes pgrs...Imn . .., and make pre-
cisely similar transpositions in the case of each of the other given arrays. If now
wayz . . . >—< pgrs . . ., it follows from sec. 94 that there must be an aspect
wxyz . . . Yk . . of the whole system S, such that wayz...9yk... >—< pgrs . ..
dmn . . .5 andif weyz . . . <—= pqrs. . . it follows from sec. 95 that there is no aspect
wayz . . . Yk . .. of the whole system S such that wayz. .. ijk ... >—< pgrs. ..
Imn .. .; de., in the former case there must be a symbol wwxyz ... 4k. .. among
the transposed arrays, in the latter case there can be no such symbol.

Tabular Representation of Systems.

100. A convenient mode of arranging the symbols abed . . ., &ec., representing a
system of m undistinguished aspects of a whole system S of # units a, b, ¢, d, . . . is

Fig. 23.

to place them one above another so that letters occupying ¢ the same position” in the
different rows may lie in the same column. For example, the system of fig. 23 may
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be represented thus : —
abcecde
bedae
cdabe
dabee
adcbe
decbae
cbade
badce

101. The symbol thus arrived at, consisting of nm letters arranged in m rows and
n columns, will be termed the tabular representation of S. Each of the nm letters
will be termed an element.

102. The order of the rows is clearly immaterial. Any alteration in the order of
the columns merely substitutes for one system of undistinguished aspects of S another
system of undistinguished aspects of S, and any one of these systems of undistin-
guished aspects defines the form of S, thus the order of the columns is also imma-
terial. The material point is that certain elements are all in the same row, and
certain elements all in the same column.

103. Each sort of letter represents a unit of S; each column regarded as a unit
represents a sort of place ; each row represents an aspect of S, or, regarded as a unit,
a unified aspect of S; and each letter, or element, an aspect of a unit of S.

104. Any row R, may be regarded as derived from another row R, by a substitu-
tion of the letters of the row R,. If the same substitution be effected upon any
row Rg, we get a row R, which is also a row of the table.

105. The substitutions by which any row of the tabular representation of S is
derived from another may be said to be substitutions proper to S. ‘

106, If we confine our attention to certain rows and columns only of the tabular
representation of S, we get a table which will be termed a constituent of the whole
table. The order of the rows and columns will be disregarded in a constituent as
in a complete table. ‘

107. If @ <—>b, @ and b can never appear in the same column. Thus the
columns break up into lots, each lot belonging to a single system.

108. If @ >—< b, then @ appears in every column that b does, and b in every
column that a does. '

109. Generally if abed ... >—< pgrs ... we have in the table a constituent
abed. .. .
pgrs...
the forms of the various components can readily be ascertained from the table.

110, If we desire to consider the forms of portions only of a system, we may

D2

> and if abed . .. <—= pgrs ... we have no such constituent. Thus
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confine our attention to such constituents as will exhibit the form. Thus in the case
of sec. 100 the constltuent shows that the pair a, ¢ is a symmetrical one.

111. A discrete heap Wlll be represented by a table of one row ; a single heap of
n units by a table of [n rows; and a heap consisting of "single 1ndependent heaps
of p,q, 7,8 ... units 1espectwe1y will have a table of |pX|gX|rX]|s.. . rows.

Correspondences of Undistinguished Collections.

112. The various correspondences of undistinguished collections are indicated by
two-row constituents of the tabular representation of the system of which the
collections are components.

113. TIf the two rows of the constituent contain like letters in different orders, the
constituent will be said to indicate a self-correspondence, i.e., a correspondence of a
collection C with itself; and not with another collection (sec. 76). Any two-row
constituent containing two complete rows of the table representing a system S will
indicate a self-correspondence of S, and the table may accordingly be said to indicate
the form of S by indicating all its self-correspondences.

114. If the two rows of the constituent representing a correspondence of C with
itself contain like letters in the same order, the constituent will be said to indicate
an wdentical-correspondence of C. The identical-correspondence may be regarded as
included among the self-correspondences of C. The self-correspondence of a single
unit is an identical-correspondence.

115. In general the table representing a system S will have rows which are
partially alike, indicating that in some of the self-correspondences of S some of the
components are identically-correspondent. For example, in sec. 100 the unit e is
always identically-correspondent. Thus constituents may have several rows which
are duplicates. If we merely desire to consider those correspondences which the
constituent indicates, we may, of course, omit duplicate rows.

116. If one two-row constituent be a part of another, the correspondence indicated
by the former may be said to ““occur in ” that indicated by the latter ; as when the
latter correspondence occurs the former also occurs.

117. If we regard all collections of units under consideration in an investigation as
components of the universal system which comprises all units, or, as is sufficient, as
components of the whole system of units considered in the investigation, we may
regard every correspondence of undistinguished collections as occurring in one or
more self-correspondences of the universal or more limited system. From this point
of view we see that a correspondence of two undistinguished collections, or the self-
correspondence of a collection, restricts the possible correspondences and self-corre-
spondences of other collections. In some cases it may determine absolutely the
correspondences and self-correspondences of the other collections, not permitting
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alternative correspondences or self-correspondences, in others it may partially restrict
them, in others it may exercise no controlling effect whatever, so that collections may
go through all correspondences and self-correspondences with as much freedom as if
there were no correspondence already existing.

118. If two collections are such that each can go through all its self-corre-
spondences while the other remains identically-correspondent, they will be said to be
wndependent, If two collections are not independent, they will be said to be related.

119. If m and m’ be the. number of self-correspondences of two systems S and 8’
respectively, the table representing the joint system S, S’ will have mm’ rows if S
and S are independent.

120. In the self-correspondences of a system every correspondence of undis-
tinguished components occurs; but it is not of course in general the case that in
the self-correspondences of any collection all the correspondences of undistinguished
components of that collection occur. For example, in sec. 100 the only self-corre-

spondence of a, b, ¢, is given by the constituent jé) :, and here no correspondence
of the undistinguished units a, b occurs.

121. When investigating the correspondences of a number of (n + m)-ads we
may for some time be occupied with the consideration of correspondences in which
m of the units always remain identically-correspondent. The absence of change
in the correspondence of the.m-units may lead us to forget or overlook the fact that
we are considering correspondences of the (m 4+ n)-ads, and we may suppose that we
are dealing with n-ads only. When then we find that a certain correspondence of
two m-ads apparently does not exist, we must look closely to see whether we are
not really considering correspondences of (n 4+ m)-ads, and whether a change in the
correspondence of the m units may not lead to the correspondence of the n which
is.supposed not to exist.

122. Units which in any correspondence of two undistinguished aspects are
identically-correspondent may be termed the foci of the correspondence. Three or
more undistinguished aspects such that the foci of the correspondences are the same
in the case of each pair, may be said to be confocal. We may also use the term
confocal as applicable to the case of corresponding components of the corresponding
confocal aspects.

123. In cases in which, as mentioned in sec. 121, we consider (n + m)-ads as if they
were n-ads, we really pass from the consideration of the original units to that of
other units which are arrived at by taking the m foci with each of the other units
successively, and then regarding the resulting (m + 1)-ads as single units. '

124. Differences between things can always be ignored, and thus we may at one
time regard two collections of units as distinguished, and at another, by ignoring
differences between them, as undistinguished. Here we are dealing with certain
units, upon which the differences depend, in addition to those of the two collections.
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125. For example in the case of the system of fig. 24, although all the graphical
units are alike if taken apart from the barbed lines joining them, the two triads

Fig. 24.

a, b, ¢ and d, e, fare distinguished because plain lines are distinguished from wavy
ones. If we ignore the difference between straightness L and waviness W, we are
really dealing with the eight units a, b, ¢, d, e, f; L, W, and instead of dealing
with units «, b, ¢, &c., are really dealing with the triads «LW, bLW, &c. When
we regard the two triads a, b, ¢ and d, ¢, f as distinguished, we deal with corre-
spondences represented by the constituent consisting of the first, or last, nine rows
of the table at the end of the section, in which it will be seen that L and W remain
identically-correspondent, and the correspondences are such as would exist if L and

W were distinguished. When we ignore the difference between ‘straightness and

. . abedefL'W
waviness, we admit correspondences such as FabeWL

The table representing the whole system of eight units is as follows :—

abcdef LW
bcefdLW
befde LW
cade f LW
caefd LW
cafdeLW
abde f LW
abefdLW
abfde LW
defabc WL
defbca WL
defcab WL
efdabc WL
e fdbca WL
e fdcab WL
fdeabc WL
fdebeca WL
fdecadb WL

S 00 N Q Q
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126. Many of the relations which collections of units hold to each other are
apparently independent of the form of the collections, or .of the form of the
system S, of which they are components. In dealing with such relations we ignore
differences, and regard the units composing the collections as single heaps, i.c., we do
not deal with the units @, b, ¢, d, . . . of S, but with others a, 8, y, 8, . . . which con-
stitute a single heap, but have the same self-correspondences as a, b, ¢, d, . . . have as
long as certain other units remain identically-correspondent.

127. Since we can in all cases ignore differences, any system S may be regarded as
a single heap, the peculiarities of form which it possesses in any particular investiga-
tion being regarded as due to the fact that we are not considering S alone, but in
conjunction with other units, those correspondences only of S being dealt with which
admit of the additional units remaining identically-correspondent. All statements,
therefore, as to the distinguishableness and undistinguishableness of components of S,
and as to their being of particular forms may be taken as relative, viz., as statements
that the components have the correspondences characteristic of those forms as long as
certain units detached from S remain identically-correspondent.

128. It may be laid down generally, that in almost every instance where we seem
to investigate a base system S which may be regarded and spoken of as being of
n units and of a particular form, we really deal with a single heap system H of
n units and a system F which remains identically-correspondent while the units of H
go through the correspondences characteristic of the system S.

129. Any collection of units which while another collection C remains identically-
correspondent has self-correspondences characteristic of a collection of a special form
may be said to be of that form relatively to C.

Sets.
180. If abed ..., pgrs..., are undistinguished components of a collection
a,be,d, ... p, g7 S ... l,mmn o0, ..., then the units w, , ¥, 2, . . . which are

such that abed . . . Imno . . . >—< pgrs ... wwryz...may or may not be units of
the collection, and in some cases cannot be selected so as to be units of the collection.
If the collection be such that whatever undistinguished components abed . . . , pgrs . . .
we select, and whatever other component lmno ... we select, w, @, y,2 ... can
always be selected from the collection, then the collection will be termed a set.

131. A system is obviously a set. A set is not necessarily a system ; it may be
one of a number of undistinguished sets which together compose a single or multiple
system. In most investigations our inquiries are directed towards the discovery of
the forms of component sets of the base system. As far as the distribution of ite
distinguished and undistinguished components is concerned, a set in no way differs
from a system.

132. In the self-correspondences of a set every correspondence of its undistinguished
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components occurs. Thus the constituent which represents a set has sub-constituents
indicating all the correspondences of the components of the set.

1383. In a graphical representation of a set the diagram not only indicates what
units, &c., are distinguished and what undistinguished, but is such that if we ignore
geometrical position in accordance with sec. 41, and the reference letters in accordance
with sec. 42, the units, &c., will be actually distinguished and undistinguished, and
the diagram will represent the form of the set by being actually of that form.

134. Any collection of units which is not a set may be said to be tmperfect.

135. If any collection of units is such that its component pairs are all distinguished
from the pairs connecting it with units detached from it, the collection is a set. For
let Imn . .. and pgr. . . be any two undistinguished components of the collection, then
if @ be any unit of the collection, a unit b which is such that lmn ... a is undistin-
guished from pgr ... b must also be a component of the collection, otherwise the
pairs connecting b and p, ¢, 7, . . . will be pairs connecting a unit not of the collection
with units of the collection, and they will be undistinguished from the pairs connecting
a and I, m, n,. . . which are all pairs of the collection. -

136. Let « be any unit of a single set Q of » units ; consider,the pairs formed by
@ with other units of Q; take any one of these ap; let the number of pairs ap, xq, xr,
.. . which are undistinguished from xp, be m ; then in the case of any other unit y of
Q the number of pairs yz, yj, ¥k, . . . which are undistinguished from xp is m also.
Further the number of pairs ax, bx, cx, . . . which are undistinguished from ap is also
m ; for the number m’ of such pairs must be the same in the case of each unit, and

thus we have mn=m/n, 1.e., m=m/.

Aspects unique with respect to Collections.

187, If ayz. .. abc ... >—<uvw...abc. .., then the aspects @yz . . . and uow

may be said to be duplicates with respect to the collection a, b, ¢, ... If there is no
duplicate of wyz . . . with respect to a, b, ¢, . . . then @yz . . . may be said to be unique
with respect to a, b, ¢,... It should be observed that if xyz...is unique with

respect to @, b, c,. . . there may be an aspect uvw . . . such that xyz. .. abc.. . >—<
uvw . . . cab . .. v

138. If the aspect abc . . . be unique with respect to the collection d, ¢, £, . . . and if
the apsect def. . . be unique with respect to the collection g, 4, %, . ..; thenabec. .. is
unique with respect to g, h,4,. .. I give the proof in the case in which the three
collections are detached ; the proof in other cases is somewhat longer but presents no
difficulty. If abc ... is not unique with respect to g, h, 1, . . . there are units p, g, 7,
.. .such that abc ... ghi >—<pgr...ght ..., and there are (sec. 94) units s, ¢, u,
.. .such that abe ... def...ghi...>—< pgr...stu...ghi...; but def...
is unique with respect to g, %, ¢, . . . therefore stu . . . is def'. . . , therefore abe . . . def
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voo >—<pgr...def. .., therefore abc .. . is not unique with respectto d, e,f, . . .
contrary to the hypothesis; d.e., abc. . . is unique with respect to ¢, 4, 1,. . .

139. If a single unit  be unique with respect to a collection a, b, ¢, . . . we may
represent & by the symbol (abc . ..) or [abe . ..] &c. The two symbols (abc. . .) and
[abe . . .] will, where the different sorts of brackets are distinguished from each other,
represent two units which are distinguished from each other, and each unique with
respect to a, b, ¢, . . .; or we may use the two symbols to represent two undistin-
guished units p, ¢ which are each unique with respect to o, b, ¢ .. ., the difference
between the brackets indicating that the units p, g are not identical.

140. If abc...>—< pgr ... then (abc...) >—< (pqr...), where (abc. ..)
and (pgr...) may be the same or different units; and (abc...) abc.. . >—<
(pgr...)pgr... If abe...<—= pgr... then (abc...)and (pgr...) may or
may not be distinguished units.

141. If we consider aspects such as Pabc . .., Qabc. .., Pdef. . ., &c., where in
each aspect one only of the units P, Q, &c., appears, we may represéht P, Q, &c.,
by brackets of different sorts, and write the units which are unique with respect to
P,a,b,c,... &c., thus (abc...),[abc...], (def...), &c., where P is represented
by the brackets ( ), Q by the brackets [ ].

142. Suppose a=(bc), b=(de), e==(fc), then we may represent a by the symhol
( (de) ¢) or ((d (f¢) ) ¢), each symbol representing @ and at the same time an aspect
of a collection of which a is a component. We may have such symbols with various
different sorts of brackets, e.g., if d=[mn], @ will be represented by (,( [mn] €) c).

Associates.

143. If @, b, ¢, . . . be any collection of units, and if N be another unit, such that
the pairs Aa, Ab, \c, ... are distinguished from all pairs which A makes with units
which are not components of the collection, A may be said to be an assoctate of the
collection «, b, c, . . .

144. If the pairs Aa, Ab, \c, . . . are all undistinguished from each other, A may be
termed a single pair associate.

145. If some of the pairs are distinguished from each other, X may be termed a
multiple pair associate.

146. In the special case in which all the pairs are distinguished from each other
a multiple pair associate may be termed a discrete pair associate.

147. A single pair associate of a collection can only exist if all the units of the
collection are undistinguished from each other. Also in the case of a multiple pair
associate of a collection units of the collection which make pairs with the associate
which are undistinguished must themselves be undistinguished.

148. An associate of any description may be graphically represented by a graphical
unit connected by links with each of the units of which it is an associate.

MDCCCLXXXVI. E
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-149. If we desire in the case of a multiple pair associate to indicate the dis-
tinguished pairs, we may employ lines of various sorts in lieu of links, thus :—

Fig. 25.

' 150. Many of our conceptions and definitions of systems of units involve the idea
of associates, and the graphical definition of systems by means of links is very
convenient as enabling this to be visually represented.

151. In many cases units which we might at first sight rerrdrd as associates of a
system S of some definite form, are really associates of a single heap system H
accompanied by a system F which remains self-correspondent while H goes through
correspondences characteristic of the form of S (sec. 128).

Unified Aspects.

152. The unit arrived at by regarding any aspect of a collection a, b, ¢, .. . as a
single unit, is unique with respect to the collection and may be represented by the
symbol (abe . . . ). :

153. Two aspects when unified are two distinct units, and not one unit. Thus if
abe . . . and lmn . . . are different aspects (abc-. . ) is not (Imn . ..).

154. Every aspect is unique with respect to its unified aspect; for if abc ...
(abe . .. )y >—<lmn . .. (abc...),then abc ... >—< Imn .. .and then (sec. 140)

co(abe ...y >—<Imn...({mn...); thus we have lmn. .. (abc...) >—=<
lmn ... (Imn...); and (lmn ... )is not (abc . ..) (sec. 153), thus (Imn ... ) is not
unique with respect to Imn . . ., which is contrary to sec. 152 ; therefore, &e. ‘

155. If X and p be two unified aspects of the same collection they are unique with
respect to each other. For, by sec. 152, \ is unique with respect to the collection,
and, by sec. 154, the aspect of the collection which is pu when unified is unique with
respect to p, thus, by sec. 188, \ is unique with respect to p. Similarly u is unique
with respect to \.

156. The pairs which a unified aspect (abe . . .) makes with a, b, c, . . . respectively
are all distinguished from each other. For if (abc...)a >—< (abc . . .)b, then
there are units 7, m, . . . such that (abc . . Jabe. .. >—< (abc...)blm. ..,
t.e., such that-abc . . . >—<blm . . ., 1e., such that (abc...)abc ... >—<
(blm . . .)blm . . ., te, such that (abc ... )blm ... >—< (blm ... )blm,
i.e., such that (blm ... )is not imique with respect to blm . .., contrary to sec. 152,
therefore, &e. "
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157. In the same way it may be shown that the pairs which (abc . .. ) makes
with a, b, ¢, ... respectively are all distinguished from the pairs which (abc . ..)
makes with any other units «, ¥, 2, . . . not components of the collection a, b, ¢, . . .

158. A unified aspect (abe ...) is accordingly a discrete pair associate of the
collection a, b, ¢, . . . (sec. 146).

159. It should be observed that in the case of a number of undistinguished aspects
no unit can be said to be the unit arrived at by regarding any particular one of
those aspects as unified. All we can say is that any one of a number of units may
be so regarded. If, however, one of that number is regarded as representing a
particular one of the unified aspects, some other definite unit of the number must
be regarded as the unit which represents another given unified aspect, i.e., the two
unified aspects will be such that they can only be represented by certain pairs of the
units and not by any pair.

160. When we represent aspects by single letters, those letters really represent
the unified aspects. Whatever relations as to distinguishableness or undistinguish-
ableness exist between the aspects, there will be precisely the same relations between
the unified aspects; so that we may deal with either the unified or non-unified
aspects. Thus if A, B, C, D, be the aspects abed, efgh, kI, uvwxr, when regarded
as units, then if abedefgh >—< ykluvwz, we have AB >—< CD.

161. The conception of a unified aspect is an ‘“accidental” one; for the units
representing unified aspects of componeuts of a system S may be regarded as
representing any other things holding similar relations to the units of 8. The
method of defining systems by regarding their units as unified aspects of components
of other systems is, however, so convenient and simple that it will be frequently
employed, and the accidental part of the definition being borne in mind, no danger
can arise from the employment of this method of arriving at systems.

Correspondences of Systems of like Forms.

162. We may consider correspondences of any two independent systems S, and S,
of the same form, in which every component of 8, corresponds to a component of
S, of the same form, and we may regard these correspondences as units. The
number of such correspondences is in general greater than the number of self-
correspondences of each system, as in the case of the latter we only suppose
undistinguished components to correspond, and do not admit correspondences of
distinguished components of like form.

163. If, however, we start with a correspondence of S, and S, and then restrict
ourselves as regards other correspondences to those in which each component of 8,
corresponds only with such components of 8, as are undistinguished from that
with which it corresponded in the first instance, we shall get the same number of
correspondences as there are self-correspondences of each collection S, S,.

E 2
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164. If we then take another correspondence not included among the former, we
shall get a second collection of correspondences equal in number to the former, and so

on until the correspondences are all exhausted.
165. For example the six graphical units of the system of fig. 26 constitute two

o ’cl
,y' \‘k‘
o ) & @
Fig. 26.

.y . . b .
independent systems of the same form. Starting with the correspondence ;te; which
. b b .

we may represent as a unit P, we may add correspondences ;}; and fad: which we may
represent by units Q and R respectively. Here we have only correspondences such
as those referred to in sec. 163. It is to be observed that we cannot properly say
that P represents any particular one of the three correspondences, for they are undis-
tinguished ; the three units P, Q, R, together represent the three correspondences';
but if P is regarded as representing any definite correspondence Q and R will each

represent definite correspondences, for P, Q, R, are each unique with respect to each

. abe . . :
other. If we now consider the correspondence af m which we have components of

. ; ~ab b
the same form corresponding as before, we get the correspondences ae; and Zd;. We

may represent these by the units L, M, N. The whole system of units considered is
represented by the following table —

abecdefPQRLMN
abce fAQRPNL M
abcfdeRPQMNL
bcadefRPQNL M
bcaefdP QRMN L
bcafdeQRPLMN
cabde fQRPMN L
cabefdRPQLMN
cabfdeP QRNL M

166. We may of course consider self-correspondences of a system S in which com-
ponents of like form correspond which are distinguished from each other. Thus in
the case of the system a, b, ¢, d, ¢, of fig. 27 we may consider correspondences such
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as abede or abede
aeded — acebd

will always be used, as heretofore, with reference to self-correspondences which involve
the correspondence of undistinguished collections only,

It is, however, to be understood that the term “self-correspondence ”

Fig. 27,

167. The two systems S and X of sec. 81 are of the same form. In the tabular
representation of either the unified columns will represent the units of the other.
Further, 8 and X are independent systems, no special relation except that of
similarity of form exists between them. Each aspect of S is arrived at by con-
sidering a correspondence of S and X ; it may in fact be regarded as such a corre-
spondence, so that a unified aspect is a unified correspondence, and the whole system
of unified aspects of S represent a system of unified correspondences of two systems
of the same form, in which we are restricted to such correspondences as those referred
to in sec. 163.

168. When two systerns are regarded as corresponding they may be spoken of as
being projections of each other in as many ways as there are unified correspondences.

169. If we represent the units of one of two independent systems of the same form
by the symbols (Aa), (Ab), (Ac), &c., we may represent those of the other by the
symbols (ua), (ub), (uc), &ec., where in one correspondence we may conveniently sup-
pose that (Aa) corresponds to (ue), (Ab) to (ub), and so on; but it is not to be sup-
posed that this correspondence is distinguished from others,

Replicas.

170. If @, b, ¢, d, ... and a, B, 7, §,. .. be two systems of units such that o and o
are unique with respect to each other, as also b and B, ¢ and y, &c., and if, ¢ and b
being any two units of the first system, when o >—<b we have also aa >—< b8,
then a, B, v, 3, . . . may be called a replicaof a, b, ¢, d, . . .

171. The replica of a system S is of the same form as S,and has the same relations
to other systems as S has. In the tabular representation of S and its replica, what-
ever transpositions of the letters representing an aspect of S takes place in passing
from one row to another, precisely the same transposition takes place in the case of
the letters representing an aspect of the replica.
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172. The replica of a multiple system S may have some single systems in common
with S; some of the single systems may be their own replicas.

173. The letters placed adjacent to graphical units for the purpose of reference
compose a system which is a replica of the graphical system.

Independent and Related Systems.

174. Let S, 8 be a system consisting of two detached systems S and S'; let
a, b, c,d,...Dbe the units of S, n the number of those units, and m the number of
the self-correspondences of S. Let «/, ¥/, ¢/, d’, . . . be the units of 8/, n’ the number of
those units, and m’ the number of the self-correspondences of §”. Let u be the num-
ber of self-correspondences of the system S, §”: u cannot be > mm’, otherwise there
would be duplicate rows in the tabular representation of S, S’. Consider now a set
of rows in the tabular representation of S, S’ obtained by taking any row R and all
others in which the letters o, b', ¢/, d’, . . . remain untransposed from the order they
have in R. Let the number of rows in the set be £ A transposition indicated by
two rows of the set if made to operate on any row of the set will clearly give a
row also of the set. Now take any fresh row not of the set; this must also be
one of a set of k rows detached from the former set. Thus all the rows divide up
into m’ sets of k£ rows, and we have mk=p. If k" be the corresponding number in the
case where a, b, ¢, d, . .. remain untransposed, we have mk’=u. Thus we have
m'k=mk'=p=mm’ or < mm’.

175. Let w=mm/, then k=m, k'=m/, and the two systems are independent.

176. We must have mm'=pu unless m and m’ have a common integral factor ; so
that two systems S and S’ must be independent unless the numbers of their respective
self-correspondences have a common factor. The two systems may of course be
independent when m and m’ have a common factor.

177. If m and m” are prime to each other S and S’ may be said to be prime to each
other ; so that systems which are prime to each other are independent.

178. If mm’ < u, m and m’ must have a common factor, and the two systems S
and 8" will be related. If I'm'n'..., x'y’? ... are undistinguished components of
S’,and abed . . . be an aspect of the whole system S, then the aspects I'm'n’ . . abed . . .
and 2'y?’ . .. abed . . . will not in general be undistinguished from each other ; and any
graphical diagram representing the system S, $’ must have lines, or successions of
lines, connecting units of S to units of &, so that S and S’cannot be drawn on
separate sheets of paper.

179. If we have three detached systems, S, S,, S;; and S, and 8, are related, and
also 8, and 8, it does not follow that S, and S; are related ; the single consideration
that m; and m, may have a common factor, and also m, and m,, without m, and
having one, shows this.

180. If m = m’ = p, then S and 8’ are replicas of each other.
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181. If m = p, and m #% m/, m’ will be a factor of m, and ' may be said to be a
factor system of S. 'We have here m = m'k = p.

182. If S’ be a factor system of S we have /' = 1; <.e., there is no self-corre-
spondence of S, §’, other than the identical-correspondence, in which S is identically-
correspondent. If S’ is not a factor system of S, we have £ > 1, and there are
self-correspondences of S, ', other than the identical-correspondence, in which S is
identically-correspondent. '

183. Hence if 8’ be a factor system of S, there are no units of S’ which are
duplicates with respect to S. And if there are units of S’ which are duplicates with
respect to S, then 8’ is not a factor system of S. Further, if 8’ be not a factor system
of 8, there are units of 8" which are duplicates with respect to S, unless S and S’
are replicas of each other. And if there are no units of S’ which are duplicates with
respect to S, then S’ is a factor system of S, unless S and S’ are replicas of each other.

184. If S’ be a factor system of S, each single system of S8’ must be so also. For if
m,” be the number of self-correspondences of S,” a single system of &', we have
m,” b m', e, m'm P mm’ < p,ie,m'm < p
- 185. If §’ be a factor system of 8, it is also a factor system of A, the single system
coniposed of the unified aspects of S. This follows immediately from the fact that the
combined system S, A has the same number of self-correspondences as S has.

186. Hence also every single system of §’, a factor system of S, must be a factor
system of A,

187. A system which has no factor systems, except systems of one unit, may be
termed a prime system.

188. If S” is a factor system of &, and S’ is a factor system of S, then 8" is a factor
system of 8. TFor let a”, b” units of §” be duplicates with respect to S; then we
- have a”S >—<1"S. Now if ¢’ be any unit of ', there must be a unit d such that
a’c¢’S >—< b"d’S ; and since S’ is a factor of S, we cannot have ¢/S >—< d'S, unless
¢ is d. Thus we have a”¢’'S>—<Ub'¢'S, e, we have a”’¢’ >—<b"¢/, whatever
unit ¢’ of S we take, t.e., ¢’ is b”, and there are no units of S” duplicates with respect
to 8, t.e., 8" is a factor system of S,

Three Modes of Compounding Systems.

'189. There are three modes of deriving a system from two or more other systems to
which a passing reference may here be made. In the first the compound system
is arrived ‘at by regarding the n-ads connecting n independent or related systems as
units. '

190. Again, we may have a system which may be regarded as composed of =
independent (and therefore detached) undistinguished sets, each of a given form F,
and such that their unified aspects compose a system of the form F".

191. An important special case of such a compound system is that in which the form
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F is that of a single heap H of m units. Here F’ being the form of any system S, the
compound system S, differs from S in that we have in lieu of any unit a of S a single
heap of m units, each unit of which may be called a, the form relations between the
connecting 7-ads of 7 of the heaps being the same as those existing between the r-ads
of S. Thus if in S we have abed >—<pgrs, in S, we shall also have abed >—<
pqrs, whatever units of the heaps aaa . ..., bbb . . ., &c., we select.

192. If we combine two connected component collections L and M of S, the result-
ing collection cannot contain those units which are common to L and M twice over;
v.e., the result of combining the collections a, b, ¢, d, and ¢, d, e, f is the collection
a,b, ¢ d, e f. If in S, we select collections a, b, ¢, d and ¢, d, e, f so that the units
¢, d of the first are not the same units as ¢, d of the second, the sum of the two
collections will be the collection a, b, ¢, ¢, d, d, e, f.

193. The third mode of composition is that in which the derived system has all the
self-correspondences which each of a number of systems, of the same number of units,
has. 'We may represent the units of such a system by symbols

(Aa...), (Bb...), (Cc...), &,

where A, B, C. .. are units of one of the compounded systems, a, b, ¢ those of

another, and so on.

General Method of Graphically Representing o System.

194. Let each unit of a system S, each unified column, each unified row, and
each element of its tabular representation, be represented by a graphical unit, using
different kinds of graphical units in the case of the units of S, the rows; columns, and
elements respectively, four kinds in all. Connect each graphical unit which represents
an element by links to

(L.) the graphical unit representing the unit of S of which the element represents a

unit aspect ;

(2.) the graphical unit representing the unified row in which the element lies ;

(8.) the graphical unit representing the unified column in which the element lies.

We get a graphical representation of a system of 2n--m--mn units, of which S is
a component system.

195. It is obviously not always necessary to employ the somewhat cumbrous mode
of ‘graphical representation here given; simpler methods can be adopted in special
cases. Frequently, as we have already seen, it will not be necessary to have any
auxiliary graphical units, but merely those representing the units of S itself.

Networks.

196. The pairs.of any single collection of pairs are either all component pairs of a
single system of units, or all connhecting pairs of two single systems of units,



MR. A. B. KEMPE ON THE THEORY OF MATHEMATICAL FORM. 33

197. Where a single system P of pairs connects two single systems S and =, the
number of pairs of P which connect any unit « of S to units of 3 is the same as the
number of pairs of P which connect any other unit b of S to units of S. The number
in the case of units of S is the same as the corresponding number in the case of units
of 3 if S and 3 contain the same number of units, but not otherwise.

198. Where the pairs of a single system of pairs are components of a single system
S of units, the number p of pairs of the former system which connect any unit a of
S to other units of S is the same as that in the case of any other unit b of S. Also
the number of such pairs connecting units of S to @ is the same as that of those
connecting units of S to any other unit b of S, being in both cases also v (sec. 136).

199. A single system of component pairs of any single system of units constitutes
a stmple network of which the number u of the last section may be called the way-
number. This network consists of one or more portions each continuous and detached
from the other portions. Where there are two or more detached continuous portions
of a simple network, each is undistinguished from the others, for component pairs of
distinguished portions would be distinguished.

200. Every simple network is accompanied by one in which the pairs connect the
same units but in the reverse order, so that if ab is a pair of one network, ba is a pair
of the other. The two networks may be called the reverses of each other. If we
represent the unified pairs of the one by single letters @, a, a, @, we may represent
those of the other by o, «, &', o’.  Here the sorts of the letters may be regarded as
representing the networks when regarded as units.

201. We may use the symbol («) to represent the network, of which « isa unified
pair. Here () takes the place of the sort of &. Or we may use (ab) (sec. 263).

202. The units of a continuous detached portion of a simple network form a set, for
any two are connected by a chain of one or more pairs of the network, while no com-
ponent unit is connected by such a chain with a detached unit, so that all component
pairs are distinguished from all connecting pairs of the collection (sec. 135).

208. Thus a simple network divides the units of a single system into one or more
detached sets, each of the same number of units. If, then, p be the number of units
in each set, and o the number of sets, pe=n the number of units in the system. Thus
p and o must each be integral factors of n.

204. Equations such as

P 1,
(S)_a b

oIS

S
. =3
a

where pa=gb=rc=sd=n, may be employed to denote the fact that there is a simple
network which divides the units of S into p sets of @ units, another which divides
them into ¢ sets of b units, and so on. We may have equations such as '

MDCCCLXXXYVI, F
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showing that there are three different simple networks which divide S into p sets of
o units, and so on. 'We may in such a case write the equation thus :—

5 /g\2
©=) )

205. Two distinguished simple networks, components of a single system S, either
divide S into the same detached sets, or the pairs of one of the simple networks are
pairs connecting the detached continuous portions of the other. For pairs belonging
to one simple network must either be all component pairs of the sets into which § is
divided by the other simple network or all pairs connecting them.

206. A network composed of two or more simple networks may be called a com-
pound network, and may be called double, treble, &e., according to the number of the
component simple networks. A compound network will consist of one or more undis-
tinguished detached continuous compound portions. The units of each of these
portions constitute a set.

207. Where a network simple or compound consists of only one detached portion, it
may be said to be complete.

208. If the pairs of each simple network of a compound network N connect
detached portions of the compound network composed of the remaining simple net-
works of N, then the compound network N may be said to be pure.

209. Any two simple networks of a pure compound network may be said to be out-
side each other.

210. If each pair of a simple network connects units which are both components of
the same detached portion of a simple or compound network, the latter network may

be said to enclose the former.

Chawns.

211. A succession of undistinguished pairs, ab, b, cd ... may be termed a simple
chain. Where the chain has no terminal units it may be said to be closed. Every
simple chain is a portion of a closed chain, unless it contains one pair only, when it
may be a pair connecting two systems. ,

212. Compound chains are such as contain distinguished pairs, or undistinguished
pairs of opposite polarities.

218. In the case of the pairs connecting two systems we may have networks
consisting entirely of undistinguished pairs ; but every chain in each consists of succes-
sions of pairs alternately of opposite polarities.

214. A complete network of a system contains simple or compound chains connect-

ing every two units of the system.
215. If a chain of pairs of a pure compound network contains one pair only from

one of the component simple networks, it cannot be closed, for if it were the single
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pair would not connect two detached portions of the compound network composed
of the simple networks from which the remaining pairs are taken, but two units
of a continuous portion.

216. The number of pairs in a closed chain may be termed its period. The period
of a closed chain is of course the same as the number of units it connects.

217. A symmetrical pair of units may be regarded as constituting a simple
closed chain of period 2; thus

Fig. 28.

218. It may also be convenient in some cases to regard each unit as con-

nected to itself by a single barbed line constituting a simple closed chain of period
1, thus

Fig. 29.

219. We may represent a chain of pairs thus aAbucvdpe, where a, b, ¢, d, ¢ represent
units, and the sorts of A, w, », p the networks of which the pairs ab, be, cd, de, are
respectively components ; A, u, v, &c., being the letters placed alongside of the plain
lines if we employ the graphical method of sec. 64. In some cases it will not be
necessary to employ specific letters to represent the units, they may be represented
by the spaces between the letters representing the unified pairs, e.g., we may represent
the chain given above thus aMuvpe, where only the terminal units are given. If we

have aluvpe and amoe, we see that the two units a, e are connected by the two
different chains Auvp and wo.

220. We may have equations such as
ANwp=mo=k,

denoting the fact that the three chains Auvp, wo, k can have the same terminals, and
we may write a chain such as Aupuv for shortness Mu®y, and similarly in other cases.

221. We may employ as the symbol to be attached to the barbed line of sec. 218
in accordance with the method of sec. 64 the symbol 1. An equation such as Aur=1
will then show that the chain AMuv on the left hand side of the equation is closed.

Groups— Circuats.

222. Any single set which is such that each component unit is unique with respect
to each of the others, may be termed a group.
223. The single system A of unified aspects of any system (sec. 185) is a group, as
each unified aspect is unique with respect to each of the others.
224. Every component set of a group is a group.
F 2
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225. The table, or constituent of a table, representing a group of n units has n rows,
a letter of any one sort appearing once and once only in each column.

226. The simple networks of a group are all one-way (sec. 199) networks. The
closed chains which constitute the detached portions of any network of a group may
be called simple circuits. Any closed compound chain of a group may be called a
compound circuit. '

227. If the component pairs of one simple circuit are undistinguished from those of
another, the two circuits must have the same period.

228. If the period of a simple circuit be rs where r and s are integers, there will
be r simple circuits of period s, and s of period 7, connecting the units of the circuit.

- 229. Now the number of units in a simple circuit of a group of n units must be a
factor of n (sec. 208); so that if #n be a prime number, there is only one form of
group ; for one simple circuit must contain all the units, and this being given all the
other circuits are given ; they are all of period 7.

230. In a group if the pairs of one circuit are distinguished from those of another,
but both circuits are of the same period, they may be said to be similar. The pairs
of such circuits may also be said to be similar.

231. If o, b,¢,d,e,....,A,B,C, D, E,....be units of a group, and if @, b, ¢, d, ¢, ..
constitute a simple circuit in the order given, and if the pairs ad, 0B, ¢C, dD, . ...
be all undistinguished from each other, then the units A, B, C, D, E, . . . . constitute
a similar circuit in the order given.

232. In the case of a group the terminals of any chain Muvp constitute a pair of a
definite simple network (a), 4.e., we cannot have Muvp=a, and hurp=;.

233. We may use the symbol (afBy) to represent the network (\) where A=afy.

234. The network of which the two terminals of a chain of pairs are a component
pair, may be termed the product of the networks of which the pairs composing the
chain are components ; the order of the networks in the product being of course the
same as the order of their component pairs in the chain.

235. A pure complete network furnishes chains connecting every pair of units of a
group, and thus if a, B8, y, 3, . .. be unified pairs of the simple networks of such a
network, we can with them make chains af, By? 8a, &c., whose terminals constitute
pairs of every simple network of the group. A group is accordingly fully defined if
one of its pure complete networks is given.

236. We have, whatever pair a may be, aa’=1 (sec. 200), and if a be a symme-
trical pair a=a’, and thus o’=1.

237. If aB=pa, the two networks (a) and (B) may be said to be commutative.

238, If a simple network is commutative with each of a number of others, it is
commutative with every simple network which is enclosed in the compound network
composed of the latter.

239. The system S arrived at by compoundmg together a number of independent
groups in the mode described in sec. 189 is a group having component sets of the form
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of each of the briginal groups, We may fully define the group S by a pure complete
network composed of a number of pure networks such that each detached portion of
one is composed of units constituting a group of the form of one of the original groups.

Groups containing from one to twelve Unats.

- 240. In the following twelve sections I shall denote the number of units in a group
by n; f will denote the number of forms of groups for any value of n; G the
graphical representation; T the tabular; and (S) will be the symbol described in
section 204. Where f is greater than unity, the symbols G, T, and (S) will have
numerical suffixes corresponding to the different forms. In the graphical representa-
tion, only such lines will be drawn as are necessary to completely define the group,
and in some cases alternative representations will be given, obtained by taking
different circuits. The values of n taken are from 1 to 12 inclusive.

241, If n=1 we have f=1,

242. If n=2 we have f=1,

243. If n=38 we have f=1,

244. If n=4 we have f=2,

Q o =
Qe 0
S e

o K o
! & O
Q& O g
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245. If n=>5 we have f=1,

246. If n=6 we have f=2,
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"W O30 o
OV 0N B
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N oo o 3
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VW OB o ©
O OO 3
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f=1,

247, If n=7 we have

248. If n=8 we have f=5,
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249. If n=9 we have f=2,
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Some General Forms of Groups.

253. The graphical representations of the preceding forms suggest others which
exist in the case of Jarger numbers of units. Thus the form in which a simple circuit
passes through all the units of the group appears for all the given values of n; it
obviously also exists as one form of group for every other value of n.

254. So if n be even, a form such as that given by the first figure of G, when
n=4, 6, 8, and 10, and by the first figure of G when n==12, in which all the units
are connected by a continuous chain of non-polar lines of two kinds, clearly exists
whatever value n has.

255. If n=2" we have the form such as G when n=2

G, py 4

G, » 8
in which all pairs are symmetrical. This form is closely related to the important one
considered in Logic (sec. 381), which may be derived from it by ignoring the
differences between pairs constituting a pure complete network.

A Family of Groups.®

256. Let us consider groups in which every circuit is of period 2 or 4. Some of
the symmetrical pairs of these groups are component pairs of sets of four units
composing simple circuits of period 4, say are diagonal pairs (« e in fig. 43 is a diagonal
pair) ; while some (e.g., ¢f in fig. 43) are not diagonal pairs of any simple circuit. We
might study these groups generally, but I propose here to restrict myself to groups in
which all diagonal pairs are undistinguished from each other, so that they all belong
to the same one-way simple network, say the diagonal network.

* The investigation of sections 256-269 was suggested by the late Professor CLIFFORD’S p@per on
“ GrassMAN's Extensive Algebra,” in the ¢ American Journal of Mathematics,’ vol. i., pp. 350-358.

G2
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257. Every unit @ is accompanied by one unit a’, which makes with it a diagonal

pair. We may term o the companion of a. We have («)=a.
258. Let each pair of the diagonal network be represented by a , then if « be an
unsymmetrical pair of any simple network of unsymmetrical pairs, we have

?’=m, o’=a, a'=1.

Also if B be a symmetrical pair we have §2=1.

259. The network () is commutative with all the others of the group. For if «
be any unsymmetrical pair we have a?=m, and therefore ar=anca=ma; and if B8 be
any symmetrical pair, either there is no unsymmetrical pair in the group, every circuit
being of period 2, in which case every pair is commutative with every other, or else
there are unsymmetrical pairs A\ . . . pp . . ., &ec., in which case let

:87= A, ')/:3 =M
then
7B=NB=Ly.By.B=PL.yB.yB=Lu*=Pm.

260. If a, B be any pairs, aB=pa or Bam. For let af=X\, and aB=pBac, then

NM=af.af=aBBa.c=ala.c or ara.c=da’c or d’wo

=0 Or 7o.
But == or 1, therefore o= or 1.
261. We have
afByd=ayBd or ayPmd
=ayB8 or ayBdm
according as
By=yB or yBm

t.e., if we start from any given unit and proceed along a chain composed of pairs
belonging to a given collection of networks, and then starting from the same unit
proceed along a chain composed of pairs of the same kind but in a different order, we
shall either arrive at the same unit as in the previous case or at its companion.

262. If we substitute for 7 the symbol —1, so that

a’=’n‘0,= -

we have, if 8 be a symmetriéal pair, 82=1; if unsymmetrical, 82=—1. Also, if «
and B be any two pairs, we have

af8=RBa or —pa.
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263. The group (No. 5 of sec. 248 ; see fig. 460) of 8 units given by the following
table :— :

~
~
~

>
<

‘X oy oz
uw 7y
z u x

~
~
~

<
L ]
NI
@ W

~
~

~
~

LR R
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Yy xou
m/ yl z/
uw oz oy
7 v
y x o

L v R

~

e 8 R
R @
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~

’
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is one of the species we are considering. The laws of multiplication of the component
simple networks (sec. 234), viz. of

(uz), (ua), (wy), (wy), (w2), (w), (ww), (wv),

(sec. 201) are the same as those of the quaternion expressions

i, —i, §, —j, k, —Fk, 1, —1.

For example, we have uy>—<az and uz>——<zu/, and thus, just as we have
yk=—1, so we have (uw)(uy)(uz)=(ux)(xz)(zu')=(uw’). I shall accordingly term the
group a quaternion group.

264. A double network of which the detached portions (sec. 206) are each such as
that shown in fig. 466 may be termed a pure quaternion network. The two component
networks are non-commutative; each may be termed the conjugate of the other,
and we may represent the conjugate of () by ().

265. I proceed to show that every group of the family now under consideration may
be defined by a pure complete network (sec. 285) consisting of m pairs of conjugate
networks (v.e. m distinet quaternion networks), and = other simple networks having no
conjugates in the network, (2m-+r simple networks in all) ; the 2m-r simple net-
works being such that each two are commutative unless they be a conjugate pair.

266. Consider a pure compound network consisting of m distinct pure quaternion
networks, If P be any chain of the pairs composing the 2m simple networks, each
sort of pair entering only once, if at all, into the chain, we have Pa=aP#m or aP,
v.e., P non-commutative or commutative with a, according as the chain contains or does
not contain a pair a. Now if () be any simple network which is not one of the 2m.
(v) will be commutative with some of the 2m, and non-commutative with others. Let
N be a chain containing one pair from each of the conjugates of those of the 2m
networks with which (») is non-commutative, then the simple network (Nv) (sec. 283)
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is commutative with each of the 2m. For if (a) one of the 2m is non-commutative
with (v), the chain N contains the pair a, and thus (a) is non-commutative with (N)
also, and therefore commutative with (Nv); and if (a) is commutative with (v), N
does not contain a, and thus (a) is commutative with (N) also, and therefore also
with (Nv).

267. Suppose now we have any pure complete network consisting of 2m networks
such as the 2m of the preceding sections, and also of other simple networks (\), (u),
(v) . ..; we can substitute for the latter the simple networks (LX), (Mp), (Nv) . .. where
the (L), (M), (N). .. are networks such as the (N) of the last section, and we shall still
have a pure complete network, and it will be such that the networks other than the
2m are commutative with the 2m. Now these networks other than the 2m are either
all commutative with each other, or else there are two at least which are not ; in the
latter case we may add such two to the 2m and get 2m-2 such as the 2m ; we may
then as before substitute for the remainder simple networks which are all commutative
with the 2m+-2, and may repeat the process continually until the remaining networks
other than the conjugate-pairs are all commutative with each other.

268. Any group of the family we are considering is such that all the simple
networks are commutative, or that two at least are not ; in the latter case, if we take
the two as conjugates, and take in others so as to constitute a pure complete network,
we can proceed to deal with this in the mode we have just indicated. Thus in every
case we can obtain a pure complete network containing n lots of two conjugate
networks, and one lot of 7 commutative networks, the networks of each of the
(n+47) lots being commutative with those of the others. Either n or » may vanish.

269. If we make n=4 and r=1 we have a group of 16 units given by the following
table :—

~
~
~

UXYZUXYZ

v &y 7w oy 2

® vz yaxuwzy XUZYXUZY
y 2 vweyz uwodYZUXYZTUX
oy vz oy uw ZYXUZYXTU
Wy zuayd UXYZUXYZ
x uZdy v Yy XUZYXUZY
y 2z uwady sz YZUXYZUX
z Y udy W Z2YXUZY XU
UXYZUXYZuox gy odayz

XUZYXUZY2 vz ¢oxudy

YZUXYZUXyZ vwayzuda
ZYXUZYXU?Z y vz oy axu

UXYZUXYZ W2 yz uwody

X UZYXUZY 2 widyadouz o
Y ZUXYZUXy 2z uvoaysd ua

Z YXUZYXUz e uzyaou
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The component simple networks of this group, viz. :—

(ux), (ux), (uwy), (wy), (), (wo), (ww), (),
(©X), (WX), (@Y), @Y), (uZ), uZ), (U), @U),

are subject to the same laws of multiplication as the bi-quaternion expressions

7’.: —'ia ja _j, k, _k, ]-9 _1’

wl, —ol, o, —o, ok —ok o, —o.

R-adic Groups.

270. We may have a set such that the unified component r-ads constitute a
group. We may call the set an r-adic group. If r=1 the set is an ordinary
group. ‘

271. In an r-adic group any r-ad may be made to correspond to any other r-ad,
but the correspondence of two 7-ads completely determines a self-correspondence of
the set. Thus if the form of the set be known, any self-correspondence is fully repre-
sented by a two-row r-column constituent of the table.

272. In an 7-adic group of n units the tabular representation has | ‘g rows. For
In —

all (r—1)-ads are undistinguished, and there are ]n_—-:—l-—l of these, and while any one

remains identically-correspondent the remaining (n—r+-1)-ad has self-correspondences

characteristic of a group, i.e., has (n—r—1) self-correspondences. Thus there are in all

(n—r—1) i _‘%_ 1—_:‘_7?‘% self-corresjpondences of the group including the identical
correspondence. o

273. A correspondence of two undistinguished aspects of an r-adic group has not

more than »—1 foci (sec. 122). (
274. Let S be a system of which the units are the whole collection of points lying

on a straight line, viz., a, b, ¢, d, . . . . Any aspect abed . . . of S is what is usually
termed the “range abed . .. .” For the range abed . .. we can by a homographic
transformation substitute another range of the same points a, b, ¢, d, ..., i.e.,

another aspect of S. Employing all the various homographic transformations we get
a set of aspects of S. Now, if we assume that this set is a single system, 1.e., that
all aspects of S derived from abed . .. by homographic transformations are undis-
tinguished from abed . . . and each other, but are distinguished from all aspects which
cannot be derived from abed . . . by such transformations; then S will be a triadic
group. For we can by a proper homographic transformation substitute for any three
units of S any other three units of S, but when this substitution is made, every other
unit of S has a definite unit of S substituted for it.
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Substrtutions.

275. Each row of the tabular representation of a system is derived from each of the
others by definite substitutions. Instead of writing down the various rows, we may
give one only, and state the law or laws according to which the other rows are derived.
Thus the form of a system a, b, ¢, d, . . . is given by merely writing down the letters
representing the units of the system (since each letter appears only once, we may
represent the units by the letters in place of their sorts), and stating the laws of
substitution, in other words, the substitutions proper to the form (sec. 105).

276. Conversely, in considering a system of n letters, or other things, admitting of
certain substitutions, we are considering a system of # units of a definite form.

277. The various arrays of letters considered when dealing with substitutions are
thus aspects of a system.

278. When the arrays are regarded as units the substitutions will be represented
by pairs ; substitutions of the same sort by undistinguished pairs ; similar substitutions
by similar pairs (sec. 230).

279. The substitution of one aspect of a system for another, substitutes for a
component, collection of any form another component collection of the same form.

Algebras.

280. Consider the system V of 3n units arrived at by regarding as units the pairs
connecting the units @, b, ¢, d, ... of a system S of n units with the three dis-
tinguished units A, u, ». If we adopt the method of representation of secs. 139 and

152 the units of V will be represented by—

(o) (b1) (e\)
(ap) (bp) (ew) - . &e
(av) ‘(bv) (cv)

It will, however, conduce to clearness in the present instance to write them thus—

a, b, Cy . .
N b, C . . &
a, b, e,

The symbols of the three rows represent the units of three different systems, each of
which systems is a replica of the others and of S. We may denote the three systems
when regarded as units by S,, S,, S,, respectively.

281. Now consider the system E arrived at by regarding the triads connecting the
three systems as units. This will contain 7#® units, which may be written thus—

(a0, (wd,e,), &e.
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282. We have collections of triads connecting S,S,S,* in which each pair connecting
S,and S, appears once in a triad, and once only, e.g., if S contains two units a, b, only,
we have such collections as

o, a, d, a,a,b, a,a,b,
a b, a, a, b, a, a, b, b,
b, a, a, o g, a,b, or g, a, b,
b b, a, b b, a, by b, a,

The number of such collections in the general case is n*, each containing n?® triads.
When the triads are regarded as units we get #* collections each containing n? units
of E.

283. When these collections are unified we get a system A of #* units, which will
be a multiple system.

284. The form of A is in part independent of that of S and in part dependent,
certain components being distinguished whatever be the form of S, while it depends
on what the form of S is whether others are d1st1ngu1shed or not.

285. When considering the multiplicity of the system A, or those peculiarities of
form it possesses which arise from the mode of its construction apart from any special
peculiarities in the form of S, we regard S as a single heap system.

286. If S be a single heap system, certain units of A are undistinguished from
each other, while others are distinguished. If S be not a single heap system, so
that its self-correspondences are more restricted than they would be in the former
case, some units of A originally undistinguished become distinguished, so that a
unit which was one of several undistinguished units, may become unique. Thus
certain units of A have definite relations to S, and are of use as auxiliaries to the
latter.

287. A convenient mode of conceiving of the system E is to regard its units as
small cubes composing a big one, the axes of the cube being represented by \, w,
and ». Any layer of the cube normal to X, say a X layer, contains small cubes repre-
senting triads (unified) all containing the same unit of S,, and similarly in the cases
of w and ». If a, be the unit of S, in the triads which are represented when unified by
a \ layer, the layer may be termed the a, layer, and when unified represents a,. We
may also conveniently term a row of cubes parallel to the axis X a uv row ; it contains
cubes representing triads all of which contain the same connecting pair of S, and S,,
say the pair a,b,, and when unified is represented by (a,b,). The \ layers thus repre-
sent the system 8,, and must be supposed to admit of substitutions among themselves
characteristic of the form of S, (sec. 276), and similarly in the case of p and ». Here
the collection of units, which when unified gives a unit of A, is represented by cubes

* In strictness this should be “ triads connecting the sjstems which when unified are Sa, Su, S, respec-
tively ;”* but the abbreviation is convenient and will not lead to misconception (see sec. 20).
MDCCCLXXXVI. H
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such that each Au row contains one cube and one only of the collection. If S be a
single heap system, the multiplicity of A will be the number of the systems into

which the collections of cubes thus constituted break up.
288. We may represent any one of the collections which when unlﬁed is a unit

of A by a square diagram. Take, for example, the case n=4; we have such a
diagram as the following :—

@ b 0 &
ale|ld| 6|
tlelelx| @
clolelela
d|d|8|a|a}

Here the square may be supposed to be a face of the cube normal to », A and u
being supposed to be vertical and horizontal respectively. The left hand letters
indicate whether the adjacent A 'layefs are a, or b, or ¢,, &c., respectively, the top
letters whether the adjacent u layers are a, or b, or ¢, &c., respectively ; and the
letters contained in the squares, each of which squares is supposed to represent a
cube, 7.e., a unit of E, indicate which » layers the various cubes lie in.

- 289. By regarding the pairs connecting the system E and a system of units 7, o, §,
&c., which are all distinguished from each other, as unified, we may get a number
of systems E,, E,, E, &c., replicas of each other and of E, and we may consider
systems arrived at by taking one or more component systems of each of the systems
E., E,, B, &c. Similarly in the case of A.

290. Now let a be one of the units of A arrived at by regarding as unified a
collection of units of E of which (,b,¢,) is one. This collection of units of E which
when unified is @, contains no other unified triad of the sort (a,b,.), e.g., (ab.d,),
so that ¢, is unique with respect to a, a,, b, ; for when ¢, is changed to d,, @, and b,
remaining unchanged, a is changed to a unit arrived at by regarding a collection of
units of E containing (@,b,d,) as unified, which cannot be «. We may, therefore,
write

¢, = (aab,).

We may deal with the other triads concerned in arriving at « in the same way,
and get a collection of %® equations, viz.—

(xanat,) = . (abya,) = .
(aayd,) = ¢, (abd,) = .  &o
(ape,) = . (xbye,) = -

&e. &e. &e.
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where the letters on the right-hand side of the equations depend on the particular
unit o selected. '

291. Now we may make ¢, = ¢, and similarly in the case of every other unit of
S and 8, ; also we may represent the units A and p by two positions, and write a,b,
thus a,b,, where the order of @, and b, is imwmaterial, or merely ab where the order
is material ; the equations then become

(eaa) = . (ocbé) = .

(aad) = ¢ (@bb) = . &e.
(zac) = (abc) = .
&e. &e. &e.

If then we have two equations such as

(eab) = ¢ and (acd) = ¢,
we may write v
e = (a(aad)d),

and similarly in other cases; so that we obtain complex expressions representing the
form relations which the units of S hold to each other and to the units N, g, o ; which
expressions, however, adwit of considerable simplification in certain cases.

292. An equation such as (aab) = ¢ I shall term a primitive equation. The whole
collection of triads which are concerned in arriving at a will be termed a primitive
algebra, o being termed a wnified primitive algebra.* An equation, such as ¢ =
(a(xab)d), where only one primitive algebra is involved, may be termed a complex
primitve equation.

293. Those components of E which are represented when unified by the units
of A furnish us, by the application of the preceding methods, with every possible
primitive algebra, associative or non-associative, commutative or non-commutative, &c.,
and we can discuss the number of the forms, and the relations of the various algebras,
by discussing E in the case in which 8 is a single heap system (sec. 285).

294. We may have any number of unified primitive algebras «, 8, v, 8, . . . which
may be undistinguished from each other or not. If the unified primitive algebras
are all selected from one system A, (sec. 289), they may be said to be algebras of
the same operation w, if from different systems A,, A,, they may be said to be
algebras of different operations, e.g., multiplication, addition, &c.

295. We may deal with each of these algebras as with a and we may also deal
with them in combination and obtain equations such as e =(a(Bab)d), giving compli-
cated expressions for the units of S, which will represent the form relations they hold
to each other and to the units \, u, «, B, &c.

* We might regard the primitive equations as units, and apply the term “ unified primitive algcbra,”
not to «, but to the unit arrived at by regarding as unified the collection of unified primitive equations
derived from the triads concerned in arriving at a.

u 2
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296. Where two or more primitive algebras are considered, we may speak of the
unit arrived at by regarding them as unified as a unified compound algebra.

297. The discussion of form is very generally carried on by the help of these
auxiliary algebras. In some cases the units a, b, ¢, d, . . . of the base system under
- consideration are regarded as unified pairs Xa', Xb’, X¢', . . . . where X is an algebra

primitive or compound, and o/, ¥, ¢/, . . . are units constituting a single heap system,
which have the correspondences characteristic of the system a, b, ¢, . . . as long as
X remains identically correspondent. But various devices exist which must be
examined in each case.

298, Where only one unified primitive algebra is considered, we may regard the
~unit a as expressed by the brackets ( ), and write an equation (zab)=c simply as
(ab)=ec, or we may omit the brackets and write the equation thus ab=c.

299. Ifin an algebra every equation (ab)=c is accompanied by an equation (ba)=c,
the algebra is said to be commutative.

300. If in an algebra any three equations such as

(ab)=wx

(be)=y

(wc)=2
are accompanied by the equation

(ay)=2

the algebra is said to be associative.  Since ((ab) c)=(a(bc)) either expression may
be written (abc), and no ambiguity arises.
- 801. If w and p two algebras are such that the equations

(mab)=w (wba)=1

(wac)=y (mea)=m

(rad)=2 (rda)=n
(pbe)=d

are accompanied by the equations

()= (p)=n
i.e., if p (wab . wac)=mu (a . pbc)
and p (wba . mca)=m (pbc . )

then the algebra 7 is said to be distributive with respect to the algebra p.
We may take wab to be a X b, aund pab to be a+4b ; we then have

aXb+aXc=a(b+c)
bxa+cex a=(b+c)Xa
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302. An algebra may be self-distributive, i.e., such that
(a(be))=((ab)(ac))-
(See sec. 349.)

803. An important class of primitive algebras is that in which (ab) # a or b,
except in the. case of one nnit z, which is such that (2z)=2, and also such that what-
ever unit of S o may be (20)=a and (az)=a. Here every unit ¢ is accompanied by
another o such that (¢a’)=2. Ordinary addition and multiplication furnisi two such
algebras. In the former (ab) is a+b, a is 0, and &’ is— a ; in the latter (ab) is & X b,
zis 1,and a’is 61—6

804. The algebras which are such that in the case of each unit @ we have (aa)=a,
are also of considerable importance. We have such an algebra in the case of
ordinary logic (sec. 860).

305. We may in ordinary parlance speak of three units a,, b,, c¢,, composing the
triad giving rise to a primitive equation, as if they were units @, b, ¢, of S, without
any ambiguity arising. The unit @ when dealt with as a multiplier will be a,, and so
on ; but it will not be necessary to be continually pointing this out. We may thus
speak of products (aa) when there is really only one a.

306. If in any system of units S every pair is accompanied by one or more units
unique with respect to the pair, we may select one of these accompanying units in the
case of each pair and term it the product of the pair. Where there is only one such
accompanying unit in the case of each pair, this will be the product, but if there be
several such, any one of these might be chosen as the product. The most natural
mode of selection in the case of undistinguished pairs is to select products which will
with the pairs make undistinguished triads. (Secs. 343, 349.)

307. In the case of distinguished pairs we cannot of course do this, but we may in
some cases choose products so that the resulting triads will all be of the same form,
this not being so if other products be chosen ; or we may choose the products, so that
by ignoring some difference the triads all become undistinguished from each other, the
products still being unique with respect to the pairs.

808. In cases in which some pairs are not accompanied by a unit umque with
respect to them, or even in other cases, we may add to S a single system of one unit
Z, and call this the product of the pairs; Z being also considered as the product
of each unit of S when multiplied by or into Z, (Sec. 319, and cf. sec. 343.)

309. In certain cases the products. considered may not be unique with respeot to
the multiplier and multiplicand, but with respect to a collection containing them
and certain other units, which remain the same in the case of every multiplier and
multiplicand of the system, and may therefore be termed constants.

An instructive example of this is furnished by a system of collinear points. If 1, 2,
u, &, b, be five points of such a system, there is one point, and one only, which is such
that the six points
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1, 2, U, C, A, b,
lie respectively on the six lines

PQ, RS, PR, QS, PS, QR,

passing through four coplanar points P, Q, R, S : i.e., the unit ¢ is unique with respect
’@0 the collection 7, 2, u, a, b. Now let ¢, z, u, be three constants in the foregoing sense.
Then we may call ¢ the product of @ and b,  The primitive algebra which thus
arises may readily be shown to be associative and commutative,

Again, there is one point d, and one only, which is such that the points

’ 5,12 d,a, b,
lie respectively on the six lines
LM, NO, LN, MO, LO, MN,
passing through four coplanar points L, M, N, O: wec., the unit d is unique with
respect to the collection 7,2, a, b. Here, if ¢ and z be constants, d may be regarded as
a second species of product of ¢ and b, and may be termed the sum of a and b. The
primitive algebra thus arising is also associative and commutative,

The first of these two primitive algebras is distributive as regards the second. In
fact the compound algebra composed of the two primitive algebras is of the same kind
as the ordinary algebra of quantity, the units ¢, 2, u, corresponding respectively to the
o, 0, and 1 of such algebra.*

810. We may speak of the collection consisting of the products of the pairs
connecting two component collections of a system S as the product of those collections.
If the number of units in the multiplier collection be n, and the number of those in
the multiplicand be m, the number in the product will not necessarily be mn, for the
product @ of a connecting pair ap may be the same unit as the product of another
connecting pair bg. We may speak of the collection consisting of the products of all
the pairs of a collection a, b, ¢, d . . .. together with the products («a), (bb), (cc). .
as the square of the collection @, b, ¢, d. ... In the same way we may have cubes,
&ec., of a collection.

811. If we substitute for S the system S, of sec. 191, we may regard products (ap)
and (bg) as two different units (sec. 192), and if this be done in the case of each product,
we shall have mn units in the product.

312. We may regard the components of S or S, as units, and then the products will
be units, the products of pairs of units.

Quadrates.
313. Let S, S,, be two single heap systems, replicas of each other. Let a;, by, ¢, . ..
be units of 8;; ay, by, ¢, . ... be corresponding units of S, Considering the pairs
connecting S, and S, ; these may be written v

* Bee a paper by the writer “On an Extension of Ordinary Algebra” in the Messenger of Mathematics.,
Vol. XV. New Series, p. 188.
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a oy a, by a, ¢y, &c.
b, a, b, b, b, ¢,, &c.
¢ Qg ¢; b, ¢, ¢y &c.
&e. &e. &e.

If it be understood that we are throughout dealing with pairs connecting S,S, we
may write any aspect p, ¢, thus pq, the position of a letter in the pair taking
the place of the unit represented by the subscript number. We then have under
consideration the aspects .

ac ab ac, &e.

ba bb be, &e. | (X)
ca chb cc, &e.

&e. &e. &e.

These will be #° in number, where z is the number of units in each of the systems S,
S;.  The aspects aa, bb, cc, . . . are undistinguished from each other, but are distin-
guished from all the other aspects ab, ac, be . . . . which again are all undistinguished
from each other.*

814. We may regard the aspects as unified, and shall then get a double system P
composed of the system P; of n unified aspects {aa), (bb), (cc) . . . .. , and the
system P, of n’-n unified aspects (ab), (ac), (bc) ... .1

315. The mode of arranging the aspects adopted at X in sec. 313 suggests a mode of
clothing the units of P which is very convenient for purposes of description, and
for emphasizing the peculiarities of P; viz., that of regarding the units as arranged
in rows and columns, the order of which is to be disregarded, so that the rows as
units form a single heap system, as also the columns.

316. In fig. 60 we have a system P of the species considered, in which n=4; the
asterisks represent units of P,, the dots those of P,.

| *
B

#*
*

Fig. 60.

317. The pairs of P form a system of multiplicity 13 ; viz., we have the 13 sorts of

pairs given by the following diagrams, where in the last seven cases the top unit in the
first column, and the bottom in the second are those composing the pair considered.

(1>‘* * (2) ¢ ko, (3) R (4)3?, (5);@» (6)v:> |
(M * e, GF 1, (9) s, (Q0)g*, (11) T %, (12) 4 ., (13) T .

* If we confine ourselves to the latter system of aspects, we might regard them as aspects of either of
the systems S, and S;; but the aspects aa, bb, cc . . . . must be regarded as connecting pairs of the two
systems S; and S,.

+ We should obtain a system of the same form as P if we took S, and the unified pairs of S;. Here S,
takes the place of P, and the unified pairs of S take the place of P,.
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The pairs (1), (5), (10), and (12) will be termed joined pairs; each is such that the
column in which the first unit lies and the row in which the second unit lies intersect
at an asterisk. In the literal mode of representation they are such as

(1) (aa)(ab), (5) (ba)(aa), (10) (ab)(ba), (£2) (ab)(be),

v.e., such that the last letter in the first bracket is of the same sort as the first letter
in the last bracket.” We may add to these the pairs such as («a)(aa) which are really
connecting pairs of two systems P, and P,. The pairs (2), (3), (4), (6), (7), (8), (11),
may be called unjoined pairs.

318. Each joined pair is accompanied by a unit unique with respect to it, repre-
sented by the dot or asterisk in the same row as the dot or asterisk representing the
first unit of the pair, and in the same column as the dot or asterisk representing the
second unit of the pair. This unit may be taken as the product of the two units
composing the pair, In the literal mode of representation we shall have

(ab)(be)=(ac)

where a, b, ¢, or any two of them may be letters of the same sort.
819. The product of two unjoined pairs is taken to be a unit Z or 0, and if (ab)

be any unit of P, we take

(ab)Z=Z
Z(ab)=Z
ZZ =2Z (sec. 308).

320. The units (ab), (ac), (be), . .., when thus dealt with as multipliers, multipli-
cands, and products,” the products being those specified in the preceding sections,
may be called quadrates.® ‘

321. We may consider products of component collections of P or Py (sec. 811) ; and
-we may regard these as unified, and thus arrive at various primitive algebras.

322. These quadrate algebras are all associative.

323. Tt will be convenient in many cases to write a quadrate (ab) thus g, assimi-

Jating it to the ordinary algebraic fraction, and a collection of quadrates (sec. 321)

thus, G4 24

324. Quadrates have been arrived at by considering unified pairs in the case of single-
heap systems. We might consider unified pairs in the case of systems of any other
form, but in such case P would not have the characteristic form which we.have been
‘considering, and we should not get products. Thus if we considered discrete heaps,
all the unified pairs would be distinguished from each other. We, of course, can and
do consider, unified pairs of any system 8, and can take their productsas if they were

* See P1ERCE on ¢ Linear Associative Algebras,” in the ‘ American Journal of Mathematics,” vol. iv., p. 215,
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quadrates ; but in such case we ignore differences, and do not deal with S, but with a
single heap system of the same number of units (secs. 127, 128). The special form -
of S has its effect as the selector of special quadrates, or collections of quadrates
(sec. 321).

325. Thus if S be a group the unified pairs divide up into systems, and we
naturally select these. The product of two such systems of unified pairs is another
such system. The unified systems (which are represented by the sorts of the pairs)
give us a primitive associative algebra. The equations we obtain are precisely the
same as those we should get if we considered chains in the manner indicated in
section 234. In both instances the equations exhibit relations existing between sorts
of letters, which in both instances represent simple networks. In the one instance we
arrive at these relations by considering individual component pairs of simple networks,
in the other by considering the whole systems of pairs composing those networks.

326. The unified aspects of any system S are a group. The unified pairs of these
are substitutions by which any aspect of S is substituted for another. The product
of any two of these is a substitution proper to S (sec. 105), viz., that which results
from operating with the multiplier and multiplicand in succession.

327. A substitution proper to S is represented by a two-row constituent of the
tabular representation of S. Kach column of this constituent may be regarded as a
quadrate, the whole constituent being thus regarded as a collection of quadrates.
Thus a substitution may be represented either by a collection of quadrates obtained
by taking pairs of S, or by a collection of quadrates obtained by taking pairs of the
group of which the units are unified aspects of S.

Isolated Collections—Residuals—Satisfied Collections.

328. A collection of units which is such that each unit of the collection is unique
with respect to the residue of the collection may be said to be usolated. Each unit of
the collection may be termed the residual of the rest.

329. The residual of a pair a, b may be written (ad) (sec. 189), and similarly in
the case of triads, &c. ' . _

330. We may graphically represent an isolated triad as in fig. 61, where \ is an

o ]
A

e
Fig. 61.

auxiliary graphical unit ; a non-isolated triad being represented as in fig. 62, without
links or auxiliary units. The same mode of representation may also be applied in the
case of isolated n-ads where n £ 3.

MDCOCLXXXVL I
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2 4
©) O

O
Fig. 62.

331. Where we are considering residuals of collections of » units, if a collection
of units C is such that every component collection of 7 units has one and only one
residual, which residual is also a component of the collection C, then C may be said to

be satisfied.
Some Isolated-Triad Systems.— Family No. 1.

332. There are certain systems in which every component collection of two units
has one residual and one only. One such system is met with in the case of the points
of intersection of a plane cubic with coplanar straight lines; these make isolated
triads of collinear points such that if a, b, ¢; d, e, f; g, h, ©; a, d, g; b, e, h are
isolated triads, ¢, f; ¢ is one also ; i.e., we have ((ab) (de)) = ((ad) (be)).

333. In another which I shall now consider the law of distribution of the isolated
triads is such that if p, ¢, 7, be a non-isolated triad ; and if [ be the residual of ¢, 7; m
of 7, p; n of p, ¢; then [, m, n is an isolated triad ; <.e., we have ((pm){)=(p(ml)).

yZ

7
Fig. 3.

834. It is an immediate consequence of the law of distribution of sec. 338, that if
s be the residual of I, p (fig. 63), it is also the residual of m, ¢ and n,’r. Thus we
arrive at a collection of 7 units (comprising the isolated triads I, m, n; m,», p; r 1, q;

Fig. 64.

P i P, lys; q, m,s; 7, m, s), which contains the residual of each of its component
pairs and is therefore satisfied. The whole collection is shown in fig. 64.
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335. In a system of this species, if we add a unit to a satisfied collection C of m
units, we must also add m others, getting 2m-+1 in all, before we can get a satisfied

collection. This may be thus shown :—Let a, b, ¢, d, .. .. be the units of C, and
let a unit % be added to C, and let o, b, ¢/, ... .. be the residuals of u, a; u, b;
%, ¢; . ...respectively ; then o/, ¥/, ¢/, . . . must all be different units; for if a’ and

b’ were identical we should have both u, o', a, and u, o', b, isolated triads. If then a
unit v be added to C, m others o, ¥/, ¢/, d’, . . . must also be added, making 2m- L
in all. This collection of units will be satisfied, so that we need not add any more
units. To prove this we have only to show that the residual of b’, ¢/, any two added
units is a unit of the enlarged collection. Let the residual of b, ¢, which will be a
unit of C be a, then we have the non-satisfied triad u, b, ¢, and the residuals of its
pairs are b’, ¢/, and @ which by sec. 333 form a satisfied, or isolated triad, for they
are the same thing, so that the residual of ¥, ¢/, is a.

836. Now every non-satisfied triad is a component of a satisfied collection of seven
units ; and by the preceding section if there be another unit added we get a collection
of 15 units, if again another be added one of 31 units, and generally a satisfied
collection consists of 2"—1 units. Every system of the species considered is of course
satisfied, and therefore contains 2”#—1 units.

337. If to any component collection C of one of these systems we add such residuals
of the different component pairs as are not already in C, and repeat the process on
the enlarged collection we get a definite satisfied component. The component R
which consists of all the added units may be termed the complement of C. The
complement of any pair is their residual. If C be itself satisfied there will be no
complement. It does not follow if R be the complement of C, that C is the comple-
ment of R, though the complement of R must be a component of C. Thus the
complement of p, g, n, s, I, in fig. 64 is m, 7, but the complement of m, 7 is p.

338. Consider a system S of the family containing 2*—1 units. Take any pair of
S, add to it any unit of S not the residual, add to the resulting triad any unit of S
not in its complement, add to the resulting tetrad any unit of 8 not in its complement,
and so on. Proceeding in this way we get an n-ad, one of several, such that its
complement comprises all the remaining units of 8. The components of three, four,
&c., units of the n-ad may be termed principal triads, tetrads, &ec., of S. A principal
n-ad has the same self-correspondences as a single heap of n units.

839. Let a, b, ¢, d . ...k, [ bea principal component of a system S, substitute for
@, b their residual vy, for y and ¢ their residual §, for 8 and d their residual ¢, and so
on until we get the pair \, /, for which substitute their residual u, which will be
unique with respect to a, b, ¢, d....k I. We should arrive at u if we took the
units of the component in any other order. To show this it is only necessary to
prove it for an interchange of any two units, for by a succession of such interchanges
we can pass to any fresh order. Let us then interchange any two units ¢ and d, and

let & be the residual of y, d, then we have to show that e is the residual of £ ¢. This
12
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follows at once from the law of sec. 833, for v, 8, d is a non-isolated triad and 1y, §, ¢,
8, d, ¢ and d, y, £ are isolated ; thus ¢, ¢, £ is isolated and e is the residual of ¢, c.
We should arrive at p if we were at any stage to substitute the residual of any two
units of the reduced component, instead of always taking the last substituted residual
as one of the two; eg., after substituting & for vy, ¢, we might substitute the
residual of %, k for h, k. The unit p is clearly a component of the complement
of a,b,¢,d.... %k I. Tt is obvious that if we started with the component

a,b,e,d....kE pwe should arrive at the unit /, and generally any other unit of
a,bye,d....k I, pwould be arrived at from the rest. In fact the whole collection
a, be,d....k I pis isolated, and each unit is thus a residual of the remainder,

the only one that there is.

340. The process of the preceding section may be applied to any component
whatever of S, with this modification in the case of non-principal components, viz.,
that where the residual of any pair is included in the component so that we cannot
add 1t to the latter in substitution for the pair, in such case the whole triad must be
removed from the component. This amounts to removing any isolated r-ad which is
contained in the component. If in the result one unit remains, it will be the only
residual ; 1f no unit remains the component is isolated.

" 341. We may classify the units of S relatively to a principal component of 7 units

thus, viz., we have

(1) The principal component of . . . . . . . . 7 units
n
2) The residuals of the pairs of these . . . . .. —LT in number
P Eh=2 |
: [
(3) , ) | triads . . . . . . . . Bp—3  »
| i
(4) ’ , tetrads. . . . . . . l‘f_]n———‘l ,
» 2
(7) ) . rads . . . . . . . . = .
(n) The residual of the n units . . . . . . . . 1 ’
Total . . . . . 2"—1 units.

344. If we represent the units of the principal component (1) by the letters a, b, c,
. . , We may represent every other unit of S as a residual of two or more of these
in the manner indicated in sec. 329. The order of the letters in the brackets will be
immaterial. The symbol representing the residual of any two units of S will be
arrived at by aggregating the letters contained in one or other of the two symbols
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representing the two units, but not in both ; e.g., the product of (abed) and (cde) will
be (abe).

343. If we call the residual (ab) the product of ¢ and b, and add to S a system of

one unit 1 such that
(aa)=1

(a1)
whatever unit of S @ may be (cf sec. 308) we have an algebra subject to the asso-

ciative law, viz., we have
((ab).0)=(a(b0))

a

Some Isolated-Triad Systems.—Family No. 2.

344. Another distribution of isolated triads which may exist is this:—If a, b, ¢,
be an isolated triad, and if o, @, 1; o, b, m; o, ¢, n are also isolated triads, then I, m, n
is an isolated triad. Thus ((oa)(0b))=/(oc)=/(o(ab)).

845. Here, if a, b, ¢, d . . . . be any satisfied component of the system, and a unit o
be added, the residuals (oa), (0b), (oc) . . . . will also compose a satisfied collection, the
tviad (oa), (ob), (oc), being isolated or not according as @, b, ¢ is an isolated
triad, or not. ,

346. The various residuals (a(oa)) ar o, (a(ob)), (a(oc)) . . . . are all distinct units, no
two of these symbols denoting the same unit ; and they constitute a satisfied collection,
the triad (a(ob)), (a(oc)), (a(od)) being isolated or not according as (0b), (oc), (od) is
isolated or not, «e., according as b, ¢, d, is isolated or not ; and similarly in the case of
the residuals (b(oa)), (b(0d)) . . ...

347. We have (a(0b)) = ((@0)(ab)) (sec. 344), and thus the united collections
a, bye.....

(oat), (0b), (0c) . . ..

(a(oa)), (bloa)), (c(oa)) . . . ..

constitute a satisfied collection. If the number of units in the collection a, b, ¢, . . . .
is m, the total number in the satisfied collection arrived at by adding o is 3n.

348. Thus the total number of units in any satisfied collection of the species now
under consideration is 3™,

349. If we call the residual (ab) the product of a and b, and write it for sim-
plicity ab, we see that ab.c 3£ a.bc, so that the associative law does not hold, as in the
preceding systems. But we have a.bc = ab.ac, so that the algebra is self-distribu-
tive. We can have, as in the case of the preceding family of systems,

aa=1
al==1.
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Geometry in General.

350. In most geometrical investigations the units constitute a system of a high
order of multiplicity ; we have points, straight lines, conics, cubics, &c., unified
collections of two, three, or more of these, operators such as quarternions, &e., &c., &c.
It will, however, be sufficient for the purpose of illustration to refer briefly to some
comparatively simple systems.

351. It is to be understood that points and the line at infinity are not regarded
as distinguished from other points and lines, and consequently parallelism is looked
upon merely as intersection on a particular line.

System of Coplanar Points and Straight Lines.

352. In a general consideration of coplanar points and straight lines the points
compose a single system, being undistinguished from each other, and the same
thing is the case with the straight lines. The connecting pairs of the two
systems are of two sorts, for a point may either lie on a line or off it; and, as
there is no other special relation between a point and a line, the system of con-
necting pairs is a double one.

- 353. We may graphically represent the lines by the graphical units 0 0 0 O,
and the points by the graphical units e e e e e. If a point lies on a line we may
connect the corresponding graphical units by a link thus O———9, no link being

drawn in the other case.
854. The number of points on each line is infinite, and an infinite number of lines

pass through each point. Every two points lie on one line and one only, so that if a
and b are any two points, the line P which is linked to both is unique with respect to
a, b (fig. 65). Pairs of points are accordingly all undistingunished from each other.

@ 8 P Q

o
Fig. 65. Fig. 66.

355. Every two lines pass through one common point, and one only; so that if
there is a point @ linked to two lines P and Q, @ is unique with respect to PQ
(fig. 66). .

- 3856. Every form which component collections of lines and points possess is also
possessed by component collections of points and lines; the two component single
systems being of precisely the same form.

357. We may take as fundamental laws defining the distribution of the links, and
therefore the form of the double system the two well-known theorems :



MR. A. B. KEMPE ON THE THEORY OF MATHEMATICAL FORM. 63

(1.) It the three points in each of the nine triads of points
a,byc; a,dye; a,9,f; bdh; c,e,h; d f,l; eg,1; b.fik; ¢cg k.
are collinear, the points of the triad %, %, { are also collinear v(ﬁg. 67).
(2.) If the three points in each of the eight triads of points

a, b; ¢; aQ, h;f; d} e;f; 0":9,6; b9g, d; c, k9 d; b9 k:f; ¢, k,e
are collinear, the points in the triad g, 4, k£ are also collinear (fig. 68).

Coplanar Points, Lines, and Conics.

358. In the case of the treble system composed of coplanar points, straight lines,
and conics, each line touches, cuts, or does not touch or cut each conic, and each point
lies onm, in, or outside each conic ; we thus have three sorts of connecting pairs in each
case. We may conveniently connect the graphical unit representing a conic by links
to the grapbical units representing points lying on the conic, and to the graphical
units representing lines touching the conic; no links being drawn 1n the other
cases ; so that the unlinked pairs are a double system.

359. If @ be any point, C any conic, of the system, there is one line and one live
only of the system which is unique with respect to the pair a, C, viz., the polar \ of
with respect to C. Likewise a is the only point unique with respect to A, C.

Logrc.

360, It will be convenient, to approach the consideration of Formal Logic from the
standpoint of the algebraist. Classes are denoted by terms A, B, C, D, . The
class which just contains, and the class which is just contained in, all the olasses
A, B, C, are denoted respectively by the sum A+B+-C, and the product ABC of the
terms denoting the several classes. Whatever class A may be, we have AA=A, and
A+A=A. Addition and multiplication are each commutative and associative ; and
are also distributive as regards each other, so that we have

(A+B)(C+D)=AC+AD+BC+BD
AB+CD=(A+C)(A+D)(B+C)(B+D)

If AB=A, which implies also A4B=B, then A is contained in _B.
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361. Two classes U and Z are considered which are such that whatever class A

may be, we have _
U4 A=T, and therefore also UA=A

Z+ A=A, and therefore also ZA =Z

so that U contains every class, and Z is contained in every class. U is the class
called the “universe,” Z is that called the “non-existent” class. The class U need
not be taken as the actual universe of thought, but as that class which contains all
classes considered in an investigation. So Z may be taken to be that class which in
any investigation is contained in all others considered, and is ignored, or regarded as

having the quality of “non-existence.”
362. Every class A is accompanied by a class A’ which may be called its obverse,

and 1s such that
A+A'=

AA'=7Z

so that A is the obverse of A’. A’is “not A.” U and Z are obverses of each other.

We have ‘
(A+B+4+C+D+...)=ABCD'...
(ABCD...Yy=A'4+B+4+C+D'+ ..

363. Now, consider a collection of = classes a, b, ¢, d, . . . such that the product of"
every two is a class z; 4.e., such that no two classes of the collection have any part in
common except that which is common to all the classes, and may therefore, when our
attention is confined to the classes of the collection and their aggregates, be regarded as
immaterial, and therefore be treated as non-existent. Such a collection may be said
to consist of separated classes. Taking these, their sums two, three, four, &ec.
together, and the class 2z, we have a collection of 2" classes, which may be called a
Jull set, and may be said to be derived from the collection of n separated classes. All
the classes of the set are contained in a class w of the set which is the sum of the
separated classes from which the full set is derived, and may be called the universe of
the set. The class z may be called the zero of the set. The whole system of classes
involved in any inquiry is a system of 2~ classes where m is the number of separated
classes, the product of each two of these being the non-existent class Z. In discussing
a system of classes we have under consideration a number of full sets with their
accompanying universes and zero classes.

364. If a be any class of a full set of which w is the universe and z the zero class,

we have
a+u=u and au=a

a+z =a and az =2

* A more general meaning is given to the expression ““full set” in sec. 381, and it must not there efme
be assumed that conversely every full set can be derived in the manner just indicated.
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and « is accompanied by a class & such that

Also we have

where a, b, ¢, d, . . . are any classes of the full set. Thus the relations of the com-
penent classes of a full set are similar to those of the component classes of a whole

system. The class « may be called the “obverse of a in the full set.” Tt is not of
course the true obverse of a, i.e., is not &/, unless the full set is the whole system.

365. Any collection of n classes a, b, ¢, d, . .. which are such that they and their
various sums and products are all different classes may be said to be a collection of
unrestricted classes. The minimum full set of which a collection of n unrestricted
classes is a component contains 2% classes; for the separated classes of such full set
are abed ..., abed..., a'bed..., dbc’'d..., abcd..., «0Jd ..., &e.,
which are 2" in number. This full set may be said to be derived from the collection
of n unrestricted classes.

366. If a, b, ¢, d, ... be any collection of unrestricted classes, we can always find
a class N\ of the derived full set, such that the classes Aa, Ab, A¢, Md, . . . have any
desired class relations to each other.*

367. Thus if we have a collection of 2* unrestricted classes a, b, ¢, d, . .., there
will be a class N such that Ao, Nb, N¢, Ad, . . . constitute a full set, and another class u
such that ua, ub, ue, ud, . . . are a collection of separated classes.

368. Suppose we have under consideration a full set T of 2* classes. We may, if
we please, ignore the relations of inclusion, &c., which they have to each other, and
treating them as a collection of separated classes constitute a derived full set P of 2%
classes containing them, their aggregates, and a zero class. Here the units of T are

the products ra, b, 7c, 7d, . . . of a class 7 and a collection a, b, c,d, ...of 2* un-
restricted classes. When we ignore the relations of inclusion, &ec., which ra, 7b, 7c,
7d, . . . have to each other, we no longer deal with ra, b, 7¢, 7d, ... but with a

collection wa, wb, e, wd, . . . of separated classes.

869. The obverse in T (sec. 364) of any class 7o is 7a’, the class containing all
classes of T which have only the zero class in common with 7. The obverse in
P of ma is ma’, the class which contains all the separated classes wb, mec, wd, . . .;
viz., all those classes arrived at ’by ignoring the relations of inclusion, &e., of 70,
¢, 7d, . . .

% Thus Mr. VENN in his ¢ Symbolic Logic,’ at chap. v., employs intersecting ellipses to represent un-

restricted classes. He then regards parts of these as eliminated, and so makes the ellipses represent
classes baving any desired relations. Here \ represents the class composed of the uneliminated spaces.

MDCCCLXXXVI. K
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370. When any collection éa, £b, &c, &d, . . . of classes of a full set T have certain
relations of inclusion, &c., to each other ; instead of saying that &a, €D, &c, &d, . . . have
these relations, we may say that @, b, ¢, d, . . . have the velations “in &7 A class £
may be completely defined by stating that it is the most extensive class in which
certain relations hold between other classes. Thus the class a+b of a full set in
which ¢ and b are unrestricted is fully defined by saying that it is the most extensive
class of the set in which “all @ is b,” or in which ab=a. Further, instead of using
this definition, we may simply employ the equation ab=a without other words; it
will then assert that the class a-+b is that under consideration and will be a mark or
term denoting that class. The equation a=w will be a term denoting the class o of
the set.

871. We might use ab=a to denote, not the class a-b, but the class which
contains all those classes arrived at by ignoring the relations of inclusion, &c.,
between a-+b and the various classes contained in a+b.* It is in this sense that
such a mark is usually employed.

372. Taking ab=a as used in the last paragraph, the term abza, t.c., ““some o
only is b,” will represent the class arrived at by ignoring the relations of inclusion,
&c., between all those classes of T which are not included in ab=a. Here ab+£a
is the obverse of ab=a in P the full set derived from the full set T by regarding the
classes of the latter as separated.

873. Terms such as ab=a, ab=a, are called propositions. The difference between
propositions and other terms is accidental and not essential matter of exact thought ;

propositions, like other terms, merely denote classes.
374. When we consider a full set T of 2 classes 7a, 7, 7¢, 7d, ..., and the

related propositional classes, we consider a system S of 9% classes, viz., that derived
from the 2" unrestricted classes «, b, ¢, d, ... ; the classes 7 and 7 being other classes
of 8. If asis generally the case T is regarded as derived from n unrestricted classes,
represented by single letters A, B, C, D, ..., the number of classes in T will be

9%, in P will be 2%, in S will be 2922.

375. In a syllogism we have two classes called the premisses, e.g., (1) (2b=a),
(2) (be=b). We consider the class which is the product of these, viz.,
(ab==a) (hc=D), t.e., that which contains all the separated classes of T, which both
(1) and (2) do. This class includes some classes, is included in others, &c. It is
included in (ac=a). The syllogism indicates this fact, the class (ac=a) being
called the conclusion.

376. We have then under discussion in an investigation of classes a system of

2" units consisting of

* If the proposition “all a is b” is taken to imply the existence of its subject @, we must exclude
the zero class of T. Similarly in the case of the proposition ““some @ only is b ” (sec. 872).
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(0) a class Z,

(1) m separated classes each containing Z,

2) m(m classes each containing two separated classes,

(r) [— =T classes each containing r separated classes,

(m) a class U containing all the separated classes.

Each class of the collection (r) may be derived by adding to some class s of the
collection (r—1) a class of (1) not contained in s.

877. We have apparently as an essential accompaniment of the idea of classes the
notion of the inclusion of one class in another. Inclusion is usually regarded as a
relation between two classes. This is not, however, really so. The notion of inclusion
essentially involves that of a chain of classes with two terminals, viz., a class U which
contains all classes, and a class Z which is contained in all classes, of the chain. In
dealing with a class A we really deal also with the classes U and Z; and in dealing
with two classes A and B we deal with the four classes A, B, U, Z. When this fact
is recognised, inclusion, as commonly conceived, is seen to be a relation which, as
far as the processes of exact thought are concerned, is accidental; that which is
essential in it depending upon the places occupied in a system of classes by two
classes relatively to two others (sec. 388). |

378. The classes U and Z are not, apart from accidents, distinguished from any
other classes. The system of which the units are classes is a single one. The reason
why U and Z seem to hold exceptional positions is that when we discuss classes we
consider their positions with reference to U and Z, which, being constantly under
consideration, acquire an accidental importance.

879. There are two distinct sorts of inclusion, viz., direct and indirect. If a is
contained in b, and b in ¢, then the inclusion of @ in ¢ may be said to be indirect ; if a
is contained in ¢, and there is no class b under consideration such that a is contained
in b and b in ¢, then the inclusion of @ in ¢ may be said to be direct. The two classes
@ and ¢ may in the latter case be said to be adjacent, in the former non-adjacent,
The relations of adjacency and non-adjacency are relations between two classes, and
do not depend upon the consideration of the classes U and Z. In a system of on
classes every class is adjacent to m classes. Thus in the ‘case of the collections of
sec. 376 every class of the collection (r) is. adjacent to classes of the collectlon
(r—1) and m—r of the collection (r-1).

380. The form of a system of 2” classes is completely defined by the division of the
pairs of classes into adjacent and non-adjacent pairs. It may therefore be graphically

K 2
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represented by 2 graphical units, of which pairs representing pairs of adjacent classes
are linked, and pairs representing pairs of non-adjacent classes are not linked.

381. A convenient mode of building up a graphical representation of such a system
is the following :—Suppose we have a graphical representation of any collection of
units, say a diagram. To this we can add a precisely similar diagram, say we can
repeat the diagram. The two diagrams will correspond unit to unit in one or more
ways. Taking one of these ways only, we can link each graphical unit of one diagram
to the corresponding unit of the other, say we can connect the two diagrams. Now
draw a single graphical unit, repeat it, and connect the two diagrams (fig. 69).
Repeat the resulting diagram and connect the two diagrams (fig. 70). Repeat the
resulting diagram and connect the two diagrams (fig. 71). Repeat the resulting
diagram and connect the two diagrams (fig. 72). This process can be carried on
indefinitely, the number of units being each time doubled, so that the number of units

after n processes is 2"

Fig. 69. Fig. 70. Fig. 71.

~ 382. Each of the diagrams may be said to represent a full set of the whole system
finally arrived at. There are of course other full sets besides these in the system.
Thus in fig. 72 there are 8 full sets represented, such as that in fig. 71 ; and generally
in any system of 2” units there are 2m full sets of 277! units.

383. We can pass from one graphical unit to another along links. We can do this
by passing along a minimum number of links, or by more circuitous routes. The
number of links passed over in the case in which we pass over a minimum number
may be termed the distance between the two units. Adjacent units are at a distance
1 apart. ‘

384. In the following sections it is to be understood that when chains connecting
two units are spoken of, those containing the same number of links as the two units
are distant apart are referred to. We can, of course, by zigzagging about, make the
chains much longer, but such chains are not those considered, which are only the
chains of minimum length.

385. Let o be any unit of a class system of 2” units. There are m units linked
to o, composing a collection which may be called o, every unit of which is at a

m(m—1) -

distance 1 from o, We have also a go]lecfibxi o, of P units other than o,

and o, each of the units of which is at a distance 2 from o So, generally, we have
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a collection o, of lTnénj_? units, each of which is at a distance » from op. Whenr=m
we get a single unit o, which is the obverse of o, and is unique with respect to o,
being the only unit of the system which is so. The units of any collection o, are
each linked to m units of o,_, and to m—r of o,,,, but to no other unitsfof the
system, so that none of them are linked to each other. We see here that the
relation of a class oy to its obverse o, is one not depending on the relations of o,
and o, to U and Z, though expressible in terms of such relations.

386. Consider now two collections of chains of links, (1) consisting of chains from
o, to a unit &, (2) consisting of chains from o, to a unit B (see sec. 384). There are some
graphical units through which chains of both collections pass. If we classify these
according to their distances from o, we find that the number in each class is always
greater than 1, except in the case of the greatest distance, when there is one only,
which is therefore unique with respect to oy, &, 8. If the chain from o, to @ passes
through B, it is clear that the unit is B itself. In the same way, if we take any
number of units &, B, vy, 8, . .., there is a unit unique with respect to oy, , B, vy, §,
which may be one of the units a, B,7,8, ... We may obtain a like unit unique
with respect to o, @, B, 'y,58, ... We may term the unit in the former case the
product of o, B, ¥, 6, . .. with respect to o; and in the latter case the product with
reSpect to o

387. If o, be Z, then the product of any units with reference to o, will be what
has been spoken of in sec. 360, simply as the product of the classes represented by
those units. The product with respect to o, which will be U, will in such case be
that which was defined in'sec. 360 as the sum of the classes.

388. If a chain from U to Z passes through two units « and B, first through o and
then through B, then a and B represent classes which are such that a contains S.
If no chain from U to Z passes through both « and B, then neither class is contained
in the other. This makes it clear that the relation of inclusion is one in essentials
depending merely on the form of a system of classes, and the position two units
occupy in it relatively to two others (U and Z); or rather, as U and Z are unique
with respect to each other, to one other, viz., either U or Z.

889. Suppose we have a system S containing the n unrestricted classes a, b, ¢, d, .. .,
the obverses U and Z, and the collection C of separated classes abed .. ., a’bed . . . ,
ab’cd...,&c. Here C has the same self-correspondences as a single heap. Now, if we
confine our attention to those self-correspondences of S in which the collection of 2n
units consisting of a, b, ¢, d, . .. , and their obverses is self-correspondent, the collection
C will have those self-correspondences only which are characteristic of a full set; and
will not have any correspondences with other collections; also the other units of S
(except Z) which may then be regarded as aggregates of the units of C taken two,
three, &c., together will correspond only if they are aggregates of component collec-
tions of C which correspond ; t.e., they and C will have correspondences as if they
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composed as many systems as there are types of component collections of a full set

of 2» classes.
890. If n=4, so that C has 16 component units, the number of these types will

be 397, so that a class system containing 16 classes has 897 different sorts of com-
ponent collections.®* It must be noted that it is distinguished collections, and not

distinguished aspects of collections, with which we are here dealing.
391. The number of types in a system of 4 units is 5. In one of 8 units it
is 21.  In both cases components containing all units of the systems are included.

* See Professor Crirvorp “ On the Types of Compound Statement involving Four Classes,” in the
¢ Proceedings of the Manchester Philosophical Society,” vol. vi., Third Series. In this paper Professor
Crirrorp denotes the 218 classes of a system derived from four unrestricted classes A, B, C, D, by state-
ments or propositions. He regards the classes A, B, C, D, and their obverses a, b, ¢, d, as distinguished
from all other classes of the system, and thus regards the separated classes as constituting a full system,
and consequently gets the division of all the classes into 396 sorts, not including the aggregate of all
the classes. In the view taken in this memoir, the 216 classes should all be regarded as undistinguished
from each other, the distinction raised between the classes A, B, C, D, «, b, ¢, d, and others, being due
to the accident of particular classes being selected to be denoted by single letters, and not to any
essential differences. This does not, of course, affect the conclusion that the number of distinct types of
component collections of a system of 16 classes is, if we do not include the collection which is the

aggregate of all the classes, 396, or if we do include such collection, 397.



